多分类下的ROC曲线和AUC
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明。如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.csdn.net/ye1215172385/article/details/79448575
由于ROC曲线是针对二分类的情况,对于多分类问题,ROC曲线的获取主要有两种方法:
假设测试样本个数为m,类别个数为n(假设类别标签分别为:0,2,...,n-1)。在训练完成后,计算出每个测试样本的在各类别下的概率或置信度,得到一个[m, n]形状的矩阵P,每一行表示一个测试样本在各类别下概率值(按类别标签排序)。相应地,将每个测试样本的标签转换为类似二进制的形式,每个位置用来标记是否属于对应的类别(也按标签排序,这样才和前面对应),由此也可以获得一个[m, n]的标签矩阵L。
比如n等于3,标签应转换为:
方法1:每种类别下,都可以得到m个测试样本为该类别的概率(矩阵P中的列)。所以,根据概率矩阵P和标签矩阵L中对应的每一列,可以计算出各个阈值下的假正例率(FPR)和真正例率(TPR),从而绘制出一条ROC曲线。这样总共可以绘制出n条ROC曲线。最后对n条ROC曲线取平均,即可得到最终的ROC曲线。
方法2:首先,对于一个测试样本:1)标签只由0和1组成,1的位置表明了它的类别(可对应二分类问题中的‘’正’’),0就表示其他类别(‘’负‘’);2)要是分类器对该测试样本分类正确,则该样本标签中1对应的位置在概率矩阵P中的值是大于0对应的位置的概率值的。基于这两点,将标签矩阵L和概率矩阵P分别按行展开,转置后形成两列,这就得到了一个二分类的结果。所以,此方法经过计算后可以直接得到最终的ROC曲线。
上面的两个方法得到的ROC曲线是不同的,当然曲线下的面积AUC也是不一样的。 在python中,方法1和方法2分别对应sklearn.metrics.roc_auc_score函数中参数average值为'macro'和'micro'的情况。
下面以方法1为例,直接上代码,概率矩阵P和标签矩阵L分别对应代码中的y_score和y_one_hot:
#!/usr/bin/python
# -*- coding:utf-8 -*- import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV
from sklearn import metrics
from sklearn.preprocessing import label_binarize if __name__ == '__main__':
np.random.seed(0)
data = pd.read_csv('iris.data', header = None) #读取数据
iris_types = data[4].unique()
n_class = iris_types.size
x = data.iloc[:, :2] #只取前面两个特征
y = pd.Categorical(data[4]).codes #将标签转换0,1,...
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 0.6, random_state = 0)
y_one_hot = label_binarize(y_test, np.arange(n_class)) #装换成类似二进制的编码
alpha = np.logspace(-2, 2, 20) #设置超参数范围
model = LogisticRegressionCV(Cs = alpha, cv = 3, penalty = 'l2') #使用L2正则化
model.fit(x_train, y_train)
print '超参数:', model.C_
# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(x_test)
# 1、调用函数计算micro类型的AUC
print '调用函数auc:', metrics.roc_auc_score(y_one_hot, y_score, average='micro')
# 2、手动计算micro类型的AUC
#首先将矩阵y_one_hot和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(y_one_hot.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print '手动计算auc:', auc
#绘图
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=13)
plt.ylabel('True Positive Rate', fontsize=13)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title(u'鸢尾花数据Logistic分类后的ROC和AUC', fontsize=17)
plt.show()
我的实战
Bnew_one1=[]
for lis in Bnew4:
bol=np.zeros(51)
bol=bol.tolist()
bol[lis[0]]=1
Bnew_one1.append(bol) Blast_one=[]
for lis in Blast:
bol=np.zeros(51)
bol=bol.tolist()
bol[lis[0]]=1
Blast_one.append(bol) Bnew_one1=np.array(Bnew_one1)
Blast_one=np.array(Blast_one)
Bnew_one=np.array(Bnew_one) print('调用函数auc:', metrics.roc_auc_score(Blast_one, Bnew_one1, average='micro')) fpr, tpr, thresholds = metrics.roc_curve(Blast_one.ravel(),Bnew_one1.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
#绘图
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=13)
plt.ylabel('True Positive Rate', fontsize=13)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title(u'大类问题一分类后的ROC和AUC', fontsize=17)
plt.show()
多分类下的ROC曲线和AUC的更多相关文章
- 【分类模型评判指标 二】ROC曲线与AUC面积
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...
- 机器学习之分类器性能指标之ROC曲线、AUC值
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- ROC曲线的AUC(以及其他评价指标的简介)知识整理
相关评价指标在这片文章里有很好介绍 信息检索(IR)的评价指标介绍 - 准确率.召回率.F1.mAP.ROC.AUC:http://blog.csdn.net/marising/article/det ...
- 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...
- ROC曲线,AUC面积
AUC(Area under Curve):Roc曲线下的面积,介于0.1和1之间.Auc作为数值可以直观的评价分类器的好坏,值越大越好. 首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本, ...
- ROC曲线和AUC值(转)
http://www.cnblogs.com/dlml/p/4403482.html 分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperat ...
- 混淆矩阵、准确率、召回率、ROC曲线、AUC
混淆矩阵.准确率.召回率.ROC曲线.AUC 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共 ...
- 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...
随机推荐
- 【前端工具】seajs打包部署工具spm的使用总结
相信使用seajs的好处大家都是知道的,接触seajs好像是在半年前,当时还不知道页面阻塞问题,这里不带多余的话了. seajs实现了模块化的开发,一个网站如果分了很多很多模块的话,等开发完成了,发现 ...
- Django中构造响应对象的方式
1 HttpResponse 可以使用django.http.HttpResponse来构造响应对象. HttpResponse(content=响应体, content_type=响应体数据类型, ...
- Apache .htaccess文件
今天在将ThinkPHP的URL模式由普通模式(URL_MODE=1)http://localhost/mythinkphp/index.php/Index/user/id/1.html改为重写模式 ...
- 深入浅出down_interruptible
http://blog.csdn.net/ce123_zhouwei/article/details/7547973
- (三) ffmpeg filter学习-编写自己的filter
目录 目录 什么是ffmpeg filter 如何使用ffmpeg filter 1 将输入的1920x1080缩小到960x540输出 2 为视频添加logo 3 去掉视频的logo 自己写一个过滤 ...
- three.js入门系列之旋转的圆台、球体、正方体
先来张图: 一.调整机位和辅助线 由上述代码可知,现在的机位是三维坐标轴上的点(2,2,2),方框的那一句很重要,有了这一句,你将获得上帝视角!!! 接下来添加辅助线(立体空间三轴): 这样就添加了一 ...
- CUDA Samples: Dot Product
以下CUDA sample是分别用C++和CUDA实现的两个非常大的向量实现点积操作,并对其中使用到的CUDA函数进行了解说,各个文件内容如下: common.hpp: #ifndef FBC_CUD ...
- iOS-----解决Prefix Header出错的问题
我们在使用 Prefix Header 预编译文件时有时会遇到如下的报错 clang: error: no such file or directory: '/Users/linus/Dropbox/ ...
- 掌握Git撤销操作,随心所欲控制文件状态
本文主要讨论和撤销有关的 git 操作.目的是让读者在遇到关于撤销问题时能够方便迅速对照执行解决问题,而不用去翻阅参数繁多的 git 使用说明. 一开始你只需了解大致功能即可,不必记住所有命令和具体参 ...
- linux中的网络基础
ifconfig -a 查看所有网口ifconfig eth 查看具体网口 ifup ethoifdown etho 网卡配置文件/etc/sysconfig/networkk-scripts/ifc ...