hadoop map端的超时参数
目前集群上某台机器卡住导致出现大量的Map端任务FAIL,当定位到具体的机器上时,无法ssh或进去后terminal中无响应,退出的相关信息如下:
[hadoop@xxx ~]$ Received disconnect from xxx: Timeout, your session not responding.
AttemptID:attempt_1413206225298_24177_m_000001_0 Timed out after 1200 secsContainer killed by the ApplicationMaster. Container killed on request. Exit code is 143
The number of milliseconds before a task will be terminated if it neither reads an input, writes an output, nor updates its status string. A value of 0 disables the timeout.
Map.Entry<TaskAttemptId, ReportTime> entry = iterator.next();
boolean taskTimedOut = (taskTimeOut > 0) &&
(currentTime > (entry.getValue().getLastProgress() + taskTimeOut)); if(taskTimedOut) {
// task is lost, remove from the list and raise lost event
iterator.remove();
eventHandler.handle(new TaskAttemptDiagnosticsUpdateEvent(entry
.getKey(), "AttemptID:" + entry.getKey().toString()
+ " Timed out after " + taskTimeOut / 1000 + " secs"));
eventHandler.handle(new TaskAttemptEvent(entry.getKey(),
TaskAttemptEventType.TA_TIMED_OUT));
}
public void progressing(TaskAttemptId attemptID) {
//only put for the registered attempts
//TODO throw an exception if the task isn't registered.
ReportTime time = runningAttempts.get(attemptID);
if(time != null) {
time.setLastProgress(clock.getTime());
}
}

Report progress
If your task reports no progress for 10 minutes (see the mapred.task.timeout property) then it will be killed by Hadoop. Most tasks don’t encounter this situation since they report progress implicitly by reading input and writing output. However, some jobs which don’t process records in this way may fall foul of this behavior and have their tasks killed. Simulations are a good example, since they do a lot of CPU-intensive processing in each map and typically only write the result at the end of the computation. They should be written in such a way as to report progress on a regular basis (more frequently than every 10 minutes). This may be achieved in a number of ways:
- Call
setStatus()onReporterto set a human-readable description of
the task’s progress - Call
incrCounter()onReporterto increment a user counter - Call
progress()onReporterto tell Hadoop that your task is still there (and making progress)
但是,事情还没完,集群中会不定时地有任务卡死在某个点上导致任务无法继续下去:
"main" prio=10 tid=0x000000000293f000 nid=0x1e06 runnable [0x0000000041b20000]
java.lang.Thread.State: RUNNABLE
at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)
at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:228)
at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:81)
at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:87)
- locked <0x00000006e243c3f0> (a sun.nio.ch.Util$2)
- locked <0x00000006e243c3e0> (a java.util.Collections$UnmodifiableSet)
- locked <0x00000006e243c1a0> (a sun.nio.ch.EPollSelectorImpl)
at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:98)
at org.apache.hadoop.net.SocketIOWithTimeout$SelectorPool.select(SocketIOWithTimeout.java:335)
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:157)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
/now wait for socket to be ready.
int count = 0;
try {
count = selector.select(channel, ops, timeout);
} catch (IOException e) { //unexpected IOException.
closed = true;
throw e;
} if (count == 0) {
throw new SocketTimeoutException(timeoutExceptionString(channel,
timeout, ops));
}
Error: java.net.SocketTimeoutException: 70000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=xxx remote=/xxx]
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1490)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:962)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:930)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1031)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:823)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:475)
while (true) {
long start = (timeout == 0) ? 0 : Time.now();
key = channel.register(info.selector, ops);
ret = info.selector.select(timeout);
if (ret != 0) {
return ret;
}
/* Sometimes select() returns 0 much before timeout for
* unknown reasons. So select again if required.
*/
if (timeout > 0) {
timeout -= Time.now() - start;
if (timeout <= 0) {
return 0;
}
}
if (Thread.currentThread().isInterrupted()) {
throw new InterruptedIOException("Interruped while waiting for " +
"IO on channel " + channel +
". " + timeout +
" millis timeout left.");
}
}
java.nio.channels.Selector
public abstract int select(long timeout)
throws java.io.IOException
Selects a set of keys whose corresponding channels are ready for I/O operations.
This method performs a blocking selection operation. It returns only after at least one channel is selected, this selector's wakeup method is invoked, the current thread is interrupted, or the given timeout period expires, whichever comes first.
- 至少一个已经注册的Channel被选择,返回的就是被选择的Channel数量;
- Selector被中断;
- 给定的超时时间已到;
但是,这也没完,难道超时了不会重试?到底会重试几次?
经过继续分析,发现往下的堆栈中的DFSInputStream调用了readBuffer方法,可以看到retryCurrentNode在第一次失败后,将IOException捕获,会进行必要的重试操作,如果还是发生超时,并且找不到就将其加入黑名单作为失败的DataNode(可能下次不会进行重试?),并转移到另外的DataNode上(执行seekToNewSource方法),经过几次后才会将IOException真正抛出。
try {
return reader.doRead(blockReader, off, len, readStatistics);
} catch ( ChecksumException ce ) {
DFSClient.LOG.warn("Found Checksum error for "
+ getCurrentBlock() + " from " + currentNode
+ " at " + ce.getPos());
ioe = ce;
retryCurrentNode = false;
// we want to remember which block replicas we have tried
addIntoCorruptedBlockMap(getCurrentBlock(), currentNode,
corruptedBlockMap);
} catch ( IOException e ) {
if (!retryCurrentNode) {
DFSClient.LOG.warn("Exception while reading from "
+ getCurrentBlock() + " of " + src + " from "
+ currentNode, e);
}
ioe = e;
}
boolean sourceFound = false;
if (retryCurrentNode) {
/* possibly retry the same node so that transient errors don't
* result in application level failures (e.g. Datanode could have
* closed the connection because the client is idle for too long).
*/
sourceFound = seekToBlockSource(pos);
} else {
addToDeadNodes(currentNode);
sourceFound = seekToNewSource(pos);
}
if (!sourceFound) {
throw ioe;
}
retryCurrentNode = false;
}
hadoop map端的超时参数的更多相关文章
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- Hadoop on Mac with IntelliJ IDEA - 10 陆喜恒. Hadoop实战(第2版)6.4.1(Shuffle和排序)Map端 内容整理
下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1 (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表 ...
- Hadoop基础-Map端链式编程之MapReduce统计TopN示例
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...
- hadoop编程小技巧(1)---map端聚合
測试hadoop版本号:2.4 Map端聚合的应用场景:当我们仅仅关心全部数据中的部分数据时,而且数据能够放入内存中. 使用的优点:能够大大减小网络数据的传输量,提高效率: 一般编程思路:在Mapp ...
- hadoop mapreduce 端参数优化
在MapReduce执行过程中,特别是Shuffle阶段,尽量使用内存缓冲区存储数据,减少磁盘溢写次数:同时在作业执行过程中增加并行度,都能够显著提高系统性能,这也是配置优化的一个重要依据. 下面分别 ...
- (转)hadoop三个配置文件的参数含义说明
hadoop三个配置文件的参数含义说明 1 获取默认配置 配置hadoop,主要是配置core-site.xml,hdfs-site.xml,mapred-site.xml三个配 ...
- 我对Map端spill的理解
一.先看简单理解 对于hadoop的map端配置项"mapreduce.task.io.sort.mb"和"mapreduce.map.sort.spill.percen ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- Hadoop Map/Reduce教程
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...
随机推荐
- NI FPGA板卡程序设计概述
NI公司提到了三种不同应用开发环境ADE:http://www.ni.com/white-paper/5956/zhs/ LabVIEW是NI公司主推的ADE,采用G语言(图像化语言),支持力度最大 ...
- ios 第3天
在手动引用计数中 每一次调用 retain retainCount 就会加一 每一次release retainCount就会减一 当retainCount 为零时 就会free (p) ; ...
- openoffice在连接时有错误,无法连接上
openoffice在连接时有错误,无法连接上 报如下错误: java.net.ConnectException: connection failed: socket,host=localhost,p ...
- linux下awk内置函数的使用(split/substr/length)
一.split 初始化和类型强制 awk的内建函数split允许你把一个字符串分隔为单词并存储在数组中.你可以自己定义域分隔符或者使用现在FS(域分隔符)的值.格式: split (strin ...
- MySQL基础(《MySQL必知必会》简单总结)
使用MySQL # 选择数据库 USE database_name; # 显示数据库 SHOW DATABASES; # 显示当前数据库的表 SHOW TABLES; # 显示特定表有哪些列 SHOW ...
- Python中的collections模块
Python中内置了4种数据类型,包括:list,tuple,set,dict,这些数据类型都有其各自的特点,但是这些特点(比如dict无序)在一定程度上对数据类型的使用产生了约束,在某些使用场景下效 ...
- linux中的网络基础
ifconfig -a 查看所有网口ifconfig eth 查看具体网口 ifup ethoifdown etho 网卡配置文件/etc/sysconfig/networkk-scripts/ifc ...
- nginx初步尝试
导师要我学习下nginx,弄个简单的负载均衡出来,具体就是请求发送到nginx上,然后nginx将请求转发到后面的两个jetty应用上,这两个应用的代码是一样的,只是监听的端口不同,由于是简单尝试,因 ...
- Mac安装最新tensorflow遇到的坑,记录下方便后人
之前其他mac电脑安装tensorflow时候一切顺利,一行命令sudo pip install tensorflow就高搞定了,但是今天在新mac上安装tensorflow时候出现了一个bug,搞了 ...
- 20179223《Linux内核原理与分析》第五周学习笔记
视频内容知识学习 一.用户态.内核态和中断 1.内核态:处于高的执行级别下,代码可以执行特权指令,访问任意的物理地址,这时的CPU就对应内核态 2.用户态:处于低的执行级别下,代码只能在级别允许的特定 ...