EXGCD的模板水题

RSA算法
给你两个大素数p,q
定义n=pq,F(n)=(p-1)(q-1)
找一个数e 使得(e⊥F(n))
实际题目会给你e,p,q
计算d,$de \mod F(n) = 1$
然后解密的值为$c_{i}^d \mod n$,转换成char输出 用EXGCD求出d就好了

/** @Date    : 2017-09-07 22:17:00
* @FileName: HDU 1211 EXGCD.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL exgcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if(b == 0)
{
x = 1;
y = 0;
}
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b)*x;
}
return d;
} LL fpow(LL a, LL n, LL mod)
{
LL res = 1;
while(n)
{
if(n & 1)
res = (res * a % mod + mod) %mod;
a = (a * a % mod + mod) % mod;
n >>= 1;
}
return res;
}
LL p, q, e, n;
LL a[N];
int main()
{
while(~scanf("%lld%lld%lld%lld", &p, &q, &e, &n))
{
for(int i = 0; i < n; i++) scanf("%lld", a + i);
LL mod = p * q;
LL fn = (p - 1) * (q - 1);
for(int i = 0; i < n; i++)
{
LL d = 0 , y = 0;
exgcd(e, fn, d, y);
d = (d + fn) % fn;
a[i] %= mod;
LL ans = fpow(a[i], d, mod);
printf("%c", fpow(a[i], d, mod) % mod);
}
printf("\n");
}
return 0;
}

HDU 1211 EXGCD的更多相关文章

  1. hdu 1211 逆元

    RSA Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  2. hdu 1211 RSA (逆元)

    RSA Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  3. HDU 1211

    水.模拟即可.使用EXGCD求逆元 #include <iostream> #include <cstdio> #include <cstring> #includ ...

  4. hdu 1211 RSA

    // 表示题目意思我是理解了蛮久 英语太水了 //首先这是解密公式 m=c^d mod n// 给你 p q e 然后 n=p*q fn=(p-1)*(q-1)// 给你 e,根据公式 e*d mod ...

  5. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  6. HDU 2239 polya计数 欧拉函数

    这题模数是9937还不是素数,求逆元还得手动求. 项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考 ...

  7. A/B HDU - 1576 (exgcd)

    要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input数据的第一行是一个T,表示有T组数据. 每组数据有两 ...

  8. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  9. 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...

随机推荐

  1. Dijkstra 最短路径算法 秒懂详解

    想必大家一定会Floyd了吧,Floyd只要暴力的三个for就可以出来,代码好背,也好理解,但缺点就是时间复杂度高是O(n³). 于是今天就给大家带来一种时间复杂度是O(n²),的算法:Dijkstr ...

  2. 03慕课网《vue.js2.5入门》——Vue-cli的安装,创建webpack模板项目

    安装Vue-cli 第一种 貌似不可以,然后用了第二种,但是重装系统后,第二种不能用了,用了第一种可以 # 全局安装vue -cli命令npm install --global vue-cli # 创 ...

  3. HDU 1754 I Hate It 线段树(单点更新,成段查询)

    题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=1754 题解: 单点更新,成段查询. 代码: #include<iostream> ...

  4. Java 将数字转为16进制,然后转为字符串类型

    public class ArrayTest3 { public static void main(String[] args){ System.out.println(toHex(60)); } / ...

  5. 使用qemu-img创建虚拟磁盘文件

    # 安装qemu-img yum install -y qemu-img   # 获取帮助 qemu-img --help   # 支持的虚拟磁盘文件格式 Supported formats: vvf ...

  6. C#和Java在多态情况下对成员访问的比较

    本文简单比较一下两种语言在里氏替换原则下,父类引用变量访问成员时的访问结果: 如果有两个类,如Person与Student,后者继承了前者,而且子类与父类有重名成员,当Person p = new S ...

  7. android Eclipse there no select

    点mainactivity类 右键  run as 进行 配置 就可运行

  8. Kafka生产者各种启动参数说明

    首先是启动一个生产者 final String kafkazk="localhost:9092"; String topic="testAPI"; Proper ...

  9. 第93天:CSS3 中边框详解

    CSS3 边框详解 其中边框圆角.边框阴影属性,应用十分广泛,兼容性也相对较好,具有符合渐进增强原则的特征,我们需要重点掌握. 一.边框圆角  border-radius    每个角可以设置两个值 ...

  10. HDU4802_GPA

    水题. #include <iostream> #include <cstdio> #include <cstring> using namespace std; ...