Simple, fast implementation of Fisher’s exact test. . For example, for the following table:

o Having the property Not having the property
Selected 12 5
Not selected 29 2

Perhaps we are interested in whether there is any difference of property in selected vs. non-selected groups, then we can do the Fisher’s exact test.

def fish_test(sample_hit, pop_hit, sample_count, root_count):
### sample_hit: 该样本中基因属于该term下面的个数
### pop_hit: 该物种的所有基因属于该term下面的个数
### sample_count: 样本中基因的个数
### root_count: 该物种在bp/cc/mf root 下基因的个数
sample_hit = int(sample_hit)
pop_hit = int(pop_hit)
sample_count = int(sample_count)
root_count = int(root_count)
sample_nhit = sample_count - sample_hit
pop_nhit = root_count - pop_hit
n1,n2,n3,n4 = (sample_hit, pop_hit - sample_hit,
sample_nhit, pop_nhit - sample_nhit)
p = abs(pvalue(n1,n2,n3,n4).right_tail)
return p

使用公式 phyper(k-1,M, N-M, n, lower.tail=FALSE)
     那么做为背景,总体基因为N,属于“化学刺激响应”这个分类的基因有M个。
     现在抽了n个基因,里面有k个基于这个分类,p值为
针对下面这个通路我做了计算, 和 用Python 包算的一致.
> phyper(16-1,45,7057-45,98,lower.tail=FALSE)
[1] 2.503033e-19
> phyper(11-1,48,7057-48,98,lower.tail=FALSE)
[1] 3.09068e-11
 
 
Index Pathway Name Pathway ID Pvalue Pvalue_adjusted Genes Count Pop Hit List_Total Background Genes Class
1 ABC transporters hsa02010 2.50e-19 4.71e-17                      
                       ABCA6|1.00                     
                       ABCC8|1.00                     
                       ABCG2|1.00                     
                       ABCG8|1.00                     
                       ABCB5|1.00                     
                       ABCB6|1.00                     
                       ABCC9|1.00                     
                       ABCC11|1.00                     
                       ABCA1|1.00                     
                       ABCA7|1.00                     
                       ABCA9|1.00                     
                       ABCA12|1.00                     
                       ABCB8|1.00                     
                       ABCB9|1.00                     
                       ABCG4|1.00                     
                       ABCG5|1.00                     
                   
16 45 98 7057 Environmental Information Processing
2 Fatty acid metabolism hsa01212 3.09e-11 2.91e-09                      
                       ACADSB|1.00                     
                       SCD|1.00                     
                       ACOX1|1.00                     
                       ACSL3|1.00                     
                       ACSL4|1.00                     
                       ACSL1|1.00                     
                       ACSL5|1.00                     
                       ACACA|1.00                     
                       ACADL|1.00                     
                       ACADM|1.00                     
                       ACSBG1|1.00                     
                   
11 48 98 7057 Metabolism

pvalue for go kegg enrichment的更多相关文章

  1. clusterProfiler包

    1)enrichGO:(GO富集分析) 描述:GO Enrichment Analysis of a gene set. Given a vector of genes, this function ...

  2. 32、Differential Gene Expression using RNA-Seq (Workflow)

    转载: https://github.com/twbattaglia/RNAseq-workflow Introduction RNAseq is becoming the one of the mo ...

  3. R包对植物进行GO,KEGG注释

    1.安装,加载所用到到R包 用BiocManager安装,可同时加载依赖包 source("https://bioconductor.org/biocLite.R") BiocMa ...

  4. (转)基因芯片数据GO和KEGG功能分析

    随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜.通过 ...

  5. GSEA - Gene set enrichment analysis 基因集富集 | ORA - Over-Representation Analysis 分析原理与应用

    RNA-seq是利器,大部分做实验的老板手下都有大量转录组数据,所以RNA-seq的分析需求应该是很大的(大部分的生信从业人员应该都差不多要沾边吧). 普通的转录组套路并不多,差异表达基因.富集分析. ...

  6. GO 和 KEGG 的区别 | GO KEGG数据库用法 | 基因集功能注释 | 代谢通路富集

    一直都搞不清楚这两者的具体区别. 其实初学者搞不清楚很正常,因为它们的本质是相通的,都是对基因进行归类注释的数据库. 建议初学者自己使用一下这两个数据库,应该很快就能明白其中的区别. (抱歉之前没讲清 ...

  7. 手把手教你看KEGG通路图!

    手把手教你看KEGG通路图! 亲爱的小伙伴们,是不是正关注代谢通路研究?或者你正面对数据,绞尽脑汁?小编当然不能让亲们这么辛苦,今天就跟大家分享KEGG代谢通路图的正确解读方法,还在迷糊中的小伙伴赶紧 ...

  8. DAVID 进行 GO/KEGG 功能富集分析

    何为功能富集分析? 功能富集分析是将基因或者蛋白列表分成多个部分,即将一堆基因进行分类,而这里的分类标准往往是按照基因的功能来限定的.换句话说,就是把一个基因列表中,具有相似功能的基因放到一起,并和生 ...

  9. KEGG富集分析散点图.md

    输入数据格式 pathway = read.table("kegg.result",header=T,sep="\t") pp = ggplot(pathway ...

随机推荐

  1. runtime 知识点

    demo https://github.com/ZOYOOPlus/runtime2 // //  ViewController.m //  runtime //  Copyright © 2017年 ...

  2. ZooKeeper 学习资料积累

    跟着实例学习ZooKeeper的用法: 临时节点 跟着实例学习ZooKeeper的用法: 缓存 跟着实例学习ZooKeeper的用法: 队列 跟着实例学习ZooKeeper的用法: Barrier 跟 ...

  3. 文本数据预处理:sklearn 中 CountVectorizer、TfidfTransformer 和 TfidfVectorizer

    文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词 ...

  4. Git详解之九 Git内部原理

    以下内容转载自:http://www.open-open.com/lib/view/open1328070620202.html Git 内部原理 不管你是从前面的章节直接跳到了本章,还是读完了其余各 ...

  5. laravel 中禁用掉注册功能

    想让 laravel 做单用户登录,禁止掉注册功能 在 RegisterController 添加以下方法 public function showRegistrationForm() { retur ...

  6. 学校项目过程中知识点 Java 2015/9/15 晚

    ##命令行运行Java程序1.文件Java的源代码存放在扩展名为“.java”的文件中:Java源文件编译后,得到“.class”的文件2.方法命令行下编译java源代码的方法:javac  文件名. ...

  7. table中文字过长使用省略号

    1.设置table固定布局,否则自适应布局会不受控制 table{ table-layout: fixed; } 2.设定td宽度占比 <table> <col width=&quo ...

  8. new Date()相关获取当月天数和当月第一天

    var  myDate = new Date(); //获取本月第一天周几 var monthFirst = new Date(myDate.getFullYear(), parseInt(myDat ...

  9. iOS保存数据的4种方式

    在iOS开发过程中,不管是做什么应用,都会碰到数据保存的问题.将数据保存到本地,能够让程序的运行更加流畅,不会出现让人厌恶的菊花形状,使得用户体验更好.下面介绍一下数据保存的方式: 1.NSKeyed ...

  10. PHP 生成类似 SqlServer NEWID() 全局唯一标识符

    最近在对接SqlServer中对方有一个字段要求 SqlServer 中 有一个 NEWID() 就是生成36位的 唯一标识符 ->  8CBD3198-297D-4037-A859-B27BB ...