【51Nod 1238】最小公倍数之和 V3
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1238
设\(A(n)=\sum\limits_{i=1}^n\frac{in}{(i,n)}\),则\(ans=\sum\limits_{i=1}^n\left(2A(i)-i\right)\)
A(n)=&n\sum_{d|n}\sum_{i=1}^{\frac nd}i\left[\left(i,\frac nd\right)=1\right]\\
=&\frac n2\sum_{d|n}\left(\varphi(d)d+[d=1]\right)\\
=&\frac n2\sum_{d|n}\varphi(d)d+\frac n2\\
ans=&\sum_{i=1}^n\left(2A(i)-i\right)\\
=&\sum_{i=1}^ni\sum_{d|i}\varphi(d)d\\
=&\sum_{i=1}^ni\sum_{d=1}^{\left\lfloor\frac ni\right\rfloor}\varphi(d)d^2\\
\end{aligned}
\]
设\(S(n)=\sum\limits_{i=1}^n\varphi(i)i^2\),求出\(O\left(\sqrt n\right)\)不同下取整取值的\(S\)就可以算出答案了,所以现在重点是杜教筛\(S(n)\)。
先让\(f(n)=\varphi(n)n^2\)卷上\(f(n)=n^2\)
\]
\sum_{i=1}^ni^3=&\sum_{i=1}^{n}\sum_{d|i}\varphi(d)d^2\left(\frac id\right)^2\\
=&\sum_{i=1}^ni^2\sum_{d=1}^{\left\lfloor\frac ni\right\rfloor}\varphi(d)d^2\\
=&\sum_{i=1}^ni^2S\left(\left\lfloor\frac ni\right\rfloor\right)\\
\end{aligned}
\]
如果要求\(S(n)\),\(S(n)=\sum\limits_{i=1}^ni^3-\sum\limits_{i=2}^ni^2S\left(\left\lfloor\frac ni\right\rfloor\right)\),时间复杂度\(O\left(n^{\frac 23}\right)\)。
PS:\(\sum\limits_{i=1}^ni^3=\left(\frac{n(n+1)}{2}\right)^2\)
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 100003;
const int B = 4641589;
const int p = 1000000007;
const int ni2 = 500000004;
const int ni6 = 166666668;
ll n;
bool notp[B + 1];
int phi[B + 1], sum[B + 1], num = 0, prime[B + 1];
void Euler_shai() {
sum[1] = phi[1] = 1;
for (int i = 2; i <= B; ++i) {
if (!notp[i]) prime[++num] = i, phi[i] = i - 1;
for (int j = 1; j <= num && prime[j] * i <= B; ++j) {
notp[prime[j] * i] = true;
if (i % prime[j] == 0) {
phi[prime[j] * i] = prime[j] * phi[i];
break;
} else
phi[prime[j] * i] = (prime[j] - 1) * phi[i];
}
sum[i] = (1ll * phi[i] * i % p * i % p + sum[i - 1]) % p;
}
}
int ps[B];
ll ndx;
int S(ll x) {return (ndx = n / x) <= B ? sum[ndx] : ps[x];}
void DJ_shai() {
for (ll i = n, y; i >= 1; i = n / (y + 1)) {
y = n / i;
if (y <= B) continue;
int &s = ps[i];
s = y % p * (y % p) % p * ((y + 1) % p) % p * ((y + 1) % p) % p * ni2 % p * ni2 % p;
for (ll j = 2, pre = 1, spre = 1, sj; j <= y; spre = sj, pre = j, ++j) {
j = y / (y / j);
sj = j % p * ((j + 1) % p) % p * ((j * 2 + 1) % p) % p * ni6 % p;
((s -= (sj - spre + p) % p * S(i * j) % p) += p) %= p;
}
}
}
main() {
scanf("%lld", &n);
Euler_shai();
int ans = 0;
DJ_shai();
for (ll i = 1, pre = 0; i <= n; pre = i, ++i) {
i = n / (n / i);
(ans += (i + pre + 1) % p * ((i - pre) % p) % p * ni2 % p * S(i) % p) %= p;
}
printf("%d\n", ans);
return 0;
}
【51Nod 1238】最小公倍数之和 V3的更多相关文章
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...
- 51Nod 1238 最小公倍数之和V3
题目传送门 分析: 现在我们需要求: \(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)\) \(=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac ...
- 51Nod 1238 - 最小公倍数之和 V3(毒瘤数学+杜教筛)
题目 戳这里 推导 ∑i=1n∑j=1nlcm(i,j)~~~\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) ∑i=1n∑j=1nlcm(i,j) =∑i=1n∑j= ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
- 51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑Nj=1∑Nlcm(i,j) 2<=N<=10102<=N ...
- 【学术篇】51nod 1238 最小公倍数之和
这是一道杜教筛的入(du)门(liu)题目... 题目大意 求 \[ \sum_{i=1}^n\sum_{j=1}^nlcm(i,j) \] 一看就是辣鸡反演一类的题目, 那就化式子呗.. \[ \s ...
随机推荐
- cookie知识点概述
cookie是什么 这个讲起来很简单,了解http的同学,肯定知道,http是一个不保存状态的协议,什么叫不保存状态,就是一个服务器是不清楚是不是同一个浏览器在访问他,在cookie之前,有另外的技术 ...
- [Leetcode] Combination Sum 系列
Combination Sum 系列题解 题目来源:https://leetcode.com/problems/combination-sum/description/ Description Giv ...
- BZOJ 1975: [Sdoi2010]魔法猪学院——K短路,A*
传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=1975 题意&简要做法 一张有向图,求出最多的互不相同的路径,满足路径长度之和\(\l ...
- Android 开发笔记(一) 按钮事件调用Activity
UI创建按钮及事件 Button mEmailSignInButton = (Button) findViewById(R.id.email_sign_in_button);mEmailSignInB ...
- 集合框架之Map学习
Map接口的实现类有HashTable.HashMap.TreeMap等,文章学习整理了“ Map和HashMap的使用方法”. /** * Map和HashMap的使用方法 */public sta ...
- php判断是手机还是pc访问从而走不同url
<?php header("Content-type:text/html;charset=utf-8"); function is_mobile(){ $user_agent ...
- Prime
#include<iostream>#include<cstdio>#include<cstring>using namespace std; const int ...
- python类的继承和多态
现在属于是老年人的脑子,东西写着写着就忘了,东西记着记着就不知道了.之前学C++的时候就把类.对象这块弄得乱七八糟,现在是因为很想玩python,所以就看看python的类和对象. 就像说的,类有三个 ...
- hdu 5918(强行水过去..正解KMP)
Sequence I Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- csu 1553(RMQ+尺取法)
1553: Good subsequence Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 794 Solved: 287[Submit][Statu ...