## [$>Codeforces \space 493\ E.Devu\ and\ Birthday\ Celebration

题目大意 : 有 \(q\) 组询问,每次有 \(n\) 小朋友和 \(m\) 个苹果,求有多少种方案,使得每个小朋友都分到一个苹果,且每个小朋友分到的苹果的数目的 \(gcd = 1\),输出答案对 \(10^9 + 7\) 取模的值

\(1 \leq n, m, q \leq 10^5\)

解题思路 :

设 \(f(n)\) 表示分苹果的方案满足 \(n | gcd\) 的方案数,\(g(n)\) 表示分苹果的方案满足 \(gcd = n\) 的方案数

显然有 \(f(n) = \sum_{n|d} g(d)\)

考虑到 \(f(n)\) 本质上是将 \(\frac{M}{n}\) 个球,放到 \(N\) 个不同盒子里盒子不能为空的方案数,插板法组合数求解即可

通过简单的莫比乌斯反演可以得到 \(g(n) = \sum_{n|d} \mu(\frac{n}{d}) f(d)\)

实际上对于每一组询问我们要求的就是 \(g(1)\) 的值,而对于 \(f(n)\) 来说,只有当 \(n|M\) 的时候才可能有值

所以只需要大力枚举 \(M\) 的因子,预处理组合数和莫比乌斯函数 \(O(1)\) 计算单个 \(f\) 的值即可

总复杂度是 \(O(Q\sqrt{m})\)

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define int ll const int N = 200005, Mod = 1000000007;
int js[N], mu[N], b[N], prime[N], inv[N], tot, n, m; inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = a * a % Mod)
if(b & 1) ans = ans * a % Mod;
return ans;
}
inline void Prework(){
mu[1] = 1, js[0] = 1, inv[0] = 1;
for(int i = 1; i < N; i++)
js[i] = js[i-1] * i % Mod, inv[i] = Pow(js[i], Mod - 2);
for(int i = 2; i < N; i++){
if(!b[i]) prime[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && i * prime[j] < N; j++){
b[i*prime[j]] = 1;
if(i % prime[j]) mu[i*prime[j]] = -mu[i]; else break;
}
}
} inline int C(int n, int i){ return js[n] * inv[i] % Mod * inv[n-i] % Mod; }
inline int calc(int x){ return x < m ? 0 : C(x - 1, m - 1) * mu[n/x] % Mod; } inline void solve(){
int ans = 0; read(n), read(m);
int num = (int) sqrt(n);
for(int i = 1; i <= num; i++) if(n % i == 0){
int x = i, y = n / i;
(ans += calc(x)) %= Mod;
if(x != y) (ans += calc(y)) %= Mod;
}
printf("%lld\n", ((ans % Mod) + Mod) % Mod);
} signed main(){
Prework();
int T; read(T); while(T--) solve();
return 0;
}

Codeforces 493 E.Devu and Birthday Celebration的更多相关文章

  1. codeforces 439 E. Devu and Birthday Celebration 组合数学 容斥定理

    题意: q个询问,每一个询问给出2个数sum,n 1 <= q <= 10^5, 1 <= n <= sum <= 10^5 对于每一个询问,求满足下列条件的数组的方案数 ...

  2. Codeforces 439E Devu and Birthday Celebration 容斥

    Devu and Birthday Celebration 我们发现不合法的整除因子在 m 的因子里面, 然后枚举m的因子暴力容斥, 或者用莫比乌斯系数容斥. #include<bits/std ...

  3. Codeforces 439 A. Devu, the Singer and Churu, the Joker

    这是本人第一次写代码,难免有点瑕疵还请见谅 A. Devu, the Singer and Churu, the Joker time limit per test 1 second memory l ...

  4. Codeforces 451 E Devu and Flowers

    Discription Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th ...

  5. 【Codeforces 258E】 Devu and Flowers

    [题目链接] http://codeforces.com/contest/451/problem/E [算法] 容斥原理 [代码] #include<bits/stdc++.h> usin ...

  6. codeforces#439 D. Devu and his Brother (二分)

    题意:给出a数组和b数组,他们的长度最大1e5,元素范围是1到1e9,问你让a数组最小的数比b数组最大的数要大需要的最少改变次数是多少.每次改变可以让一个数加一或减一 分析:枚举a数组和b数组的所有的 ...

  7. codeforces 493 div1 e

    题解: 和这件zhcs的那题有点像 第一种做法是考虑i,i+1之间的贡献 这样子就是矩形加减然后求矩形最小值个数 另一种做法是我们从左向右维护mx-nx-r+l 跟之前那题一样我们知道这个的最小值为0 ...

  8. CF(439E - Devu and Birthday Celebration)莫比乌斯容斥

    题意:将n个糖果插入f-1个挡板分成f分(a1,a2,a3...af). 问有多少种分法能够使得gcd(a1,a2,a3...af)=1; 解法.莫比乌斯容斥,首先按1为单位分,这时候有C(n-1,f ...

  9. codeforces 493 C Vasya and Basketball

    题意:给出三分线的值d,分别有两支队伍,如果小于等于d,得2分,如果大于d,得三分,问使得a-b最大时的a,b 一看到题目,就想当然的去二分了----啥都没分出来---55555555 后来才知道不能 ...

随机推荐

  1. flume监控一个linux指定的一个文件夹的文件信息

    1.编辑一个配置文件 flume-app.conf  拷贝至fulme的安装目录的conf下 # The configuration file needs to define the sources, ...

  2. sqoop一些语法的使用

    参数详细资料 观看这个博客 http://shiyanjun.cn/archives/624.html Sqoop可以在HDFS/Hive和关系型数据库之间进行数据的导入导出,其中主要使用了impor ...

  3. Oracle笔记之用户管理

    1. 创建用户 创建用户使用create user语句,需要DBA权限: CREATE USER tom IDENTIFIED BY mot; 2. 更改用户密码 修改别人的密码需要DBA权限,或者a ...

  4. Dull Chocolates Gym - 101991D 离散化 前缀和

    题目链接:https://vjudge.net/problem/Gym-101991D 具体思路:首先看数据范围,暴力肯定不可以,可以下离散化,然后先求出离散化后每一个点到(1,1)的符合题目的要求的 ...

  5. KS(Kolmogorov-Smirnov)(转)

    来源:https://blog.csdn.net/u013421629/article/details/78217498 KS(Kolmogorov-Smirnov):KS用于模型风险区分能力进行评估 ...

  6. rebbitmq之python_pika监控远程连接及自动恢复(七)

    前言 客户端连接rabbitmq后,如果长时间没有数据的传输,rabbitmq会申请关闭TCP连接,造成该TCP连接下的所有的信道都不可用,很多时候为了传输数据的高效率,我们会先创建一个信道池,这样省 ...

  7. python OS 模块 文件目录操作

    Python OS 模块 文件目录操作 os模块中包含了一系列文件操作的函数,这里介绍的是一些在Linux平台上应用的文件操作函数.由于Linux是C写的,低层的libc库和系统调用的接口都是C AP ...

  8. Linux shell中运行命令后加上字符“&”的作用(转)

    原文链接为:http://blog.sina.com.cn/s/blog_963453200102uya7.html & 放在启动参数后面表示设置此进程为后台进程 默认情况下,进程是前台进程, ...

  9. Myeclipse编辑jsp文件很卡是什么原因?

    可能是配置问题,配置的时候不要把myeclipse连接到网络.否则每次编辑的时候要在网上查找,所以照成很卡.window->perferences->java->Installed ...

  10. ios测试apk

    最近apk在ios上面测试总是会遇到奇奇怪怪的问题,现在是两个项目要集成在一个apk中所以将两个项目运行之后都是编译成了.a文件,然后在两个.a文件中都设置了两个意义相同变量名相同的全局变量(标识当前 ...