Luogu P5298 PKUWC2018 Minimax 题解 [ 紫 ] [ 树形 dp ] [ 线段树合并 ] [ 概率 dp ]
Minimax:线段树合并优化 dp 好题。
树形 dp
因为要求出每一个值的出现概率,首先我们可以想到一个很暴力的 dp 式子。
定义 \(dp_{i,j}\) 表示在节点 \(i\) 时,权值 \(j\) 的出现概率,设 \(l\) 表示左儿子,\(r\) 表示右儿子,则有如下转移:
- 当 \(j\) 在左儿子中时,\(dp_{i,j}\gets dp_{l,j}\times(p_i\times\sum_{k=1}^{j-1}dp_{r,k}+(1-p_i)\times\sum_{k=j+1}^{V}dp_{r,k})\),理解的话就是对父亲节点选大的还是选小的进行分讨。
- 当 \(j\) 在右儿子中时,\(dp_{i,j}\gets dp_{r,j}\times(p_i\times\sum_{k=1}^{j-1}dp_{l,k}+(1-p_i)\times\sum_{k=j+1}^Vdp_{l,k})\)。
直接转移即可,时间复杂度 \(O(nV)\)。
线段树合并优化
显然原来的时间复杂度会炸掉,但是我们发现每个节点最开始时最多只有一个 dp 位置是有值的,所以我们考虑用这种均摊复杂度的线段树合并来优化这个 dp。
因为 dp 转移的时候需要用到前缀和后缀和,所以我们进行 merge 的时候记录节点 \(x,y\) 的前缀和 \(px,py\) 与后缀和 \(sx,sy\) 以及父亲节点的概率 \(p\)。
梳理一下 merge 的流程:
- 进入节点 \(x,y\)。
- 如果 \(x,y\) 其中之一是空树,则说明直接更新 dp 值即可。
- 若 \(x\) 是空树,对应着上述 \(j\) 在右儿子中的转移方式,则我们对 \(y\) 的整颗子树内的 dp 值全部乘上 \((p\times\sum_{k=1}^{j-1}dp_{l,k}+(1-p)\times\sum_{k=j+1}^Vdp_{l,k})=(p\times px+(1-p)\times sx)\) 即可。这个可以用懒标记实现区间乘。
- 若 \(y\) 是空树,对应着上述 \(j\) 在左儿子中的转移方式,则我们对 \(x\) 的整颗子树内的 dp 值全部乘上 \((p\times\sum_{k=1}^{j-1}dp_{r,k}+(1-p)\times\sum_{k=j+1}^Vdp_{r,k})=(p\times py+(1-p)\times sy)\) 即可。这个可以用懒标记实现区间乘。
- 否则就说明要递归合并,递归左右儿子的时候记得更新 \(sx,sy,px,py\) 的值。
- 最后将左右儿子的 dp 值加起来就是这个区间的 dp 值。
时间复杂度 \(O(n\log n)\)。
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define eb(x) emplace_back(x)
#define pb(x) push_back(x)
#define lc(x) (tr[x].ls)
#define rc(x) (tr[x].rs)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
using pi=pair<int,int>;
const int N=300005;
const ll mod=998244353;
int n,fa[N],m=0,b[N],son[N][2],cd[N],p[N],ans[N];
ll qpow(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=(res*a)%mod;
b>>=1;
a=(a*a)%mod;
}
return res;
}
int getrk(int x)
{
return (lower_bound(b+1,b+m+1,x)-b);
}
struct Node{
int ls,rs;
ll dp,tag=1;
};
struct Segtree{
Node tr[20*N];
int root[N],tot=0;
void pushup(int p)
{
tr[p].dp=(tr[lc(p)].dp+tr[rc(p)].dp)%mod;
}
void pushdown(int p)
{
if(tr[p].tag!=1)
{
tr[lc(p)].tag=(tr[lc(p)].tag*tr[p].tag)%mod;
tr[rc(p)].tag=(tr[rc(p)].tag*tr[p].tag)%mod;
tr[lc(p)].dp=(tr[lc(p)].dp*tr[p].tag)%mod;
tr[rc(p)].dp=(tr[rc(p)].dp*tr[p].tag)%mod;
}
tr[p].tag=1;
}
void modify(int p,int v)
{
tr[p].dp=(tr[p].dp*1ll*v)%mod;
tr[p].tag=(tr[p].tag*1ll*v)%mod;
}
void update(int &u,int ln,int rn,int x,ll k)
{
if(u==0)u=++tot;
if(ln==rn){tr[u].dp+=k;return;}
int mid=(ln+rn)>>1;
if(x<=mid)update(lc(u),ln,mid,x,k);
else update(rc(u),mid+1,rn,x,k);
pushup(u);
}
int merge(int x,int y,int px,int py,int sx,int sy,int p)
{
if(x==0&&y==0)return 0;
if(x==0)
{
modify(y,(1ll*p*px%mod+1ll*((1-p)%mod+mod)%mod*sx)%mod);
return y;
}
if(y==0)
{
modify(x,(1ll*p*py%mod+1ll*((1-p)%mod+mod)%mod*sy)%mod);
return x;
}
pushdown(x);pushdown(y);
int lx=tr[lc(x)].dp,rx=tr[rc(x)].dp,ly=tr[lc(y)].dp,ry=tr[rc(y)].dp;
tr[x].ls=merge(lc(x),lc(y),px,py,(sx+rx)%mod,(sy+ry)%mod,p);
tr[x].rs=merge(rc(x),rc(y),(px+lx)%mod,(py+ly)%mod,sx,sy,p);
pushup(x);
return x;
}
void query(int u,int ln,int rn)
{
if(ln==rn){ans[ln]=tr[u].dp;return;}
int mid=(ln+rn)>>1;
pushdown(u);
query(lc(u),ln,mid);
query(rc(u),mid+1,rn);
}
}tr1;
void dfs1(int u)
{
if(son[u][0]==0)
{
tr1.update(tr1.root[u],1,m,getrk(p[u]),1);
return;
}
if(son[u][1]==0)
{
dfs1(son[u][0]);
tr1.root[u]=tr1.root[son[u][0]];
return;
}
dfs1(son[u][0]);
dfs1(son[u][1]);
tr1.root[u]=tr1.merge(tr1.root[son[u][0]],tr1.root[son[u][1]],0,0,0,0,p[u]);
}
int main()
{
//freopen("sample.in","r",stdin);
//freopen("sample.out","w",stdout);
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++)cin>>fa[i];
for(int i=1;i<=n;i++)
{
son[fa[i]][cd[fa[i]]]=i;
cd[fa[i]]++;
}
for(int i=1;i<=n;i++)
{
cin>>p[i];
if(cd[i])p[i]=p[i]*1ll*qpow(10000,mod-2)%mod;
else b[++m]=p[i];
}
sort(b+1,b+m+1);
m=unique(b+1,b+m+1)-b-1;
dfs1(1);
tr1.query(tr1.root[1],1,m);
ll res=0;
for(int i=1;i<=m;i++)res=(res+1ll*i*b[i]%mod*ans[i]%mod*ans[i]%mod)%mod;
cout<<res;
return 0;
}
Luogu P5298 PKUWC2018 Minimax 题解 [ 紫 ] [ 树形 dp ] [ 线段树合并 ] [ 概率 dp ]的更多相关文章
- BZOJ4919 大根堆(树形dp+线段树合并)
用 multiset 启发式合并贪心维护 LIS 的做法就不多说了,网上题解一大堆,着重讲一下线段树合并维护 \(dp\). \(O(n^2)\) 的 \(dp\) 非常显然.离散化后,设 \(dp[ ...
- Luogu P5298 [PKUWC2018]Minimax
好劲的题目啊,根本没往线段树合并方面去想啊 首先每种权值都有可能出现,因此我们先排个序然后一个一个求概率 由于此时数的值域变成\([1,m]\)(离散以后),我们可以设一个DP:\(f_{x,i}\) ...
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- 【pkuwc2018】 【loj2537】 Minmax DP+线段树合并
今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好 ...
- P6847-[CEOI2019]Magic Tree【dp,线段树合并】
正题 题目链接:https://www.luogu.com.cn/problem/P6847 题目大意 \(n\)个点的一棵树上,每个时刻可以割掉一些边,一些节点上有果实表示如果在\(d_i\)时刻这 ...
- 【洛谷5298】[PKUWC2018] Minimax(树形DP+线段树合并)
点此看题面 大致题意: 有一棵树,给出每个叶节点的点权(互不相同),非叶节点\(x\)至多有两个子节点,且其点权有\(p_x\)的概率是子节点点权较大值,有\(1-p_x\)的概率是子节点点权较小值. ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- [PKUWC2018]Minimax [dp,线段树合并]
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子 ...
随机推荐
- vue3-setup中使用响应式
基本类型的响应式数据 在 Vue 3 中,ref是一个函数,用于创建响应式的数据.它主要用于处理基本类型(如数字.字符串.布尔值等)的数据响应式 当我们调用 ref 函数时,会返回一个包含一个 .va ...
- [Cnblogs.Architecture][v20.5.1] 使用 AddLongToJsonConverter() 将 long 序列化为 string
场景 浏览器的 JSON 反序列化无法完整将 long 类型转换为 number,最后一位会被四舍五入. 因此需要将 long 类型转为 string 发送到前端. 适用版本 v20.5.1 使用方法 ...
- InheritableThreadLocal 父子线程值传递
最近项目中使用 @Async 异步远程调用的时候,发现主线程能拿到 token 值,子线程调用的时候 token 为 null.研究了一番,发现可以直接使用 InheritableThreadLoca ...
- 网站动静加速架构 dcdn+ga 全站加速和全球加速api
背景: 1,公司服务全部在香港 2,所有的服务也都在香港 3,但是我们的客户都在国内 4,那么国内用户访问香港的服务 那么就会存在慢的问题 至于为什么不放到国内,因为我们公司是做nft的.所以你懂得. ...
- Python 证件照换底色
# -*- coding: utf-8 -*- ''' @Time : 2021/4/12 19:06 @Author : 水一RAR ''' import numpy as np import cv ...
- 在docker中使用主机串口通讯
在进行软件docker化的过程时,很大的一个阻碍就是软件与各种外围硬件设备的交互,网口通信的设备能够很容易地接入容器,但是串口设备则要复杂一些.本文讨论在windows和linux下docker容器使 ...
- docker save与docker export实现docker镜像与容器的备份
本来想写一篇关于docker save/export/commit/load/import之间的关系的文章,后来看了看,已经有很多人写过了,我就不做重复工作了. 参见: docker save与doc ...
- docker-compose network名称定义
docker-compose启动的网络名称: 1.没有自定义网络名 $ cat docker-compose.yaml version: '2' services: zookeeper1: image ...
- Ubuntu系统编译opencv4.0以上以及opencv_contrib
一.安装依赖 sudo apt install build-essential cmake libtbb2 libttb-dev libgtk-3-dev sudo apt install ...
- 移动端弱网优化专题(十四):携程APP移动网络优化实践(弱网识别篇)
本文由携程技术团队Aaron分享,原题"干货 | 携程弱网识别技术探索",下文进行了排版和内容优化. 1.引言 网络优化一直是移动互联网时代的热议话题,弱网识别作为移动端弱网优化的 ...