Tensorflow 初步接触

机器学习 google的开源框架吧

第一个学习步骤中文的tensorflow教程

第一个py


#coding=utf-8
import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder("float",[None, 784])
w = tf.Variable(tf.zeros([784,10])) # 初始化张量可以被学习的
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,w)+b) # 模型
y_ = tf.placeholder("float",[None,10]) # 交叉熵
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) # 减少成本
init = tf.initialize_all_variables() # 初始化变量
sess = tf.Session() #启动模型
sess.run(init) for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys}) # 评估模型
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print sess.run(accuracy, feed_dict={x: mnist.test.images, y_:mnist.test.labels})

有关数据下载的google提供的python

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets

结果:

Tensorflow 初步接触的更多相关文章

  1. php大力力 [006节]初步接触认识phpMyAdmin

    phpMyAdmin 2015-08-22 php大力力006. 初步接触认识phpMyAdmin 以下是phpAdmin网络截图: 这是通过MAMP一键安装的. php中MyAdmin的使用-猿代码 ...

  2. avalon - 初步接触

    avalon - 初步接触 avalon的介绍http://rubylouvre.github.io/mvvm/ 按照作者的介绍,在HTML中添加绑定,在JS中用avalon.define定义View ...

  3. tensorflow初次接触记录,我用python写的tensorflow第一个模型

    tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000 ...

  4. 初步接触CERNVM

    初步接触的来源是对ROOT数据分析工具的搜索,看到一个叫做Life as a Physicist的国外博客.知道了这个包含容器分发的软件,跟重要的是,这个欧洲核子中心开发的平台,对于我等科研人员是一大 ...

  5. Spring boot -环境搭建 ,初步接触(1)

    1. Eclipse 创建 maven project  项目目录如下: 2. pom.xml  配置文件 <project xmlns="http://maven.apache.or ...

  6. 为什么要使用puppet 及初步接触

    为什么要使用puppet 及初步接触   1.简介 云计算环境下,密度高,机器数量多,还要求弹性和伸缩性,这对于运维提出更高的要求.系统管理员需要经常安装操作系统,对系统参数进行配置和优化,对人员进行 ...

  7. C#初步接触

    如同非常多刚開始学习的人一样,刚接触C#的时候,也是一头雾水,学习了好长时间,都搞不清楚一些基本名称是什么.什么是C#?什么是.net?什么是visual studio?它们之间有什么关系?以下我们就 ...

  8. 初步接触html心得

    接触HTML大概有七天,做一下小总结,过过记忆. html大致可分为三部分:Dtd头.Head.Body三大部分. Dtd头:是用于浏览器编辑的,也就是俗话说的给电脑看的的东西. Head:内细分下大 ...

  9. 实验记录一 初步接触cortex-M3

    应该说老早就在接触cortex-M3了.曾经没想到会接触嵌入式,结果由于导师的缘故.在选择项目管理时,就呵呵了.不废话.搭配环境非常easy,纯粹傻瓜式.可由于自己的马虎,却让自己一直困惑. 记得在前 ...

  10. java_web学习(四) 二维表的制作(初步接触MVC)

    我们需要做一个jsp页面,动态显示信息表的内容. 一.需求分析 1.  做一个实体类:StudentInfo (包含4个字段) 2.  如图模拟生成3条数据,本质上就是new StudentInfo ...

随机推荐

  1. 探秘Transformer系列之(27)--- MQA & GQA

    探秘Transformer系列之(27)--- MQA & GQA 目录 探秘Transformer系列之(27)--- MQA & GQA 0x00 概述 0x01 MHA 1.1 ...

  2. Innodb快速复习

    放一张官方架构图: 参考文章: 一文带你了解MySQL之InnoDB_Buffer_Pool-阿里云开发者社区这一篇buffer pool讲解的很好 [动画演示:MySQL的BufferPool和Ch ...

  3. K8s新手系列之Pod的重启策略

    概述 K8s中Pod的重启策略具有确保服务连续性.保证任务完整性.提升资源利用效率.便于故障排查的作用 Pod的重启策略可以根据restartPolicy字段定义. 重启策略适用于pod对象中的所有容 ...

  4. 【工具】没有人能拒绝这三种PDF阅读方式!打造良好的夜间PDF阅读环境,解放你的双眼!White is too harsh!

    方式一和二都适用于常规的浏览器, 方式三是最最好用的PDF阅读器推荐. 方式一:f12改css 步骤一:打开开发者工具(f12). 步骤二:点击选择PDF所在元素,在style里面加一行filter: ...

  5. 【ROS】1.1 ROS基本命令介绍

    原视频 ROS基本命令 右键新标签页查看大图! have to do Command Command Result 中文解释 图示 roscore Open the core of the ROS. ...

  6. odoo14里面开发一个简单的action.client 的tag 模板例子

    1.js模板  web_template.js odoo.define('web', function (require) { "use strict"; var core = r ...

  7. Django Web应用开发实战第二章

    一.基本配置信息 """ Django settings for myblog project. Generated by 'django-admin startproj ...

  8. FastAPI安全门神:OAuth2PasswordBearer的奇妙冒险

    title: FastAPI安全门神:OAuth2PasswordBearer的奇妙冒险 date: 2025/05/30 18:34:14 updated: 2025/05/30 18:34:14 ...

  9. win10将python打包成apk详细文档

    打包不支持windows所以可以找一台linux的电脑 或者用win10子系统(推荐) 我用的是Ubuntu 方法:https://www.jianshu.com/p/fcf21d45ea74 我简单 ...

  10. Git使用随记

    前言 记录Git软件使用相关的流程.命令. 注:这不是一份专业的教程. Git是什么? Git 是一个用于管理源代码的分布式版本控制系统. 版本控制系统会在您修改文件时记录并保存更改,使用户可以随时恢 ...