转载:https://www.cnblogs.com/marsggbo/p/11549631.html

平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考。以下笔记基于Pytorch1.0

1|0Tensor

Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor。如果我们需要计算某个Tensor的导数,那么我们需要设置其.requires_grad属性为True。为方便说明,在本文中对于这种我们自己定义的变量,我们称之为叶子节点(leaf nodes),而基于叶子节点得到的中间或最终变量则可称之为结果节点。例如下面例子中的x则是叶子节点,y则是结果节点。

x = torch.rand(3, requires_grad=True)
y = x**2
z = x + x

另外一个Tensor中通常会记录如下图中所示的属性:

  • data: 即存储的数据信息
  • requires_grad: 设置为True则表示该Tensor需要求导
  • grad: 该Tensor的梯度值,每次在计算backward时都需要将前一时刻的梯度归零,否则梯度值会一直累加,这个会在后面讲到。
  • grad_fn: 叶子节点通常为None,只有结果节点的grad_fn才有效,用于指示梯度函数是哪种类型。例如上面示例代码中的y.grad_fn=<PowBackward0 at 0x213550af048>, z.grad_fn=<AddBackward0 at 0x2135df11be0>
  • is_leaf: 用来指示该Tensor是否是叶子节点。

2|0torch.autograd.backward

有如下代码:

x = torch.tensor(1.0, requires_grad=True)
y = torch.tensor(2.0, requires_grad=True)
z = x**2+y
z.backward()
print(z, x.grad, y.grad)
>>> tensor(3., grad_fn=<AddBackward0>) tensor(2.) tensor(1.)

可以z是一个标量,当调用它的backward方法后会根据链式法则自动计算出叶子节点的梯度值。

但是如果遇到z是一个向量或者是一个矩阵的情况,这个时候又该怎么计算梯度呢?这种情况我们需要定义grad_tensor来计算矩阵的梯度。在介绍为什么使用之前我们先看一下源代码中backward的接口是如何定义的:

torch.autograd.backward(
tensors,
grad_tensors=None,
retain_graph=None,
create_graph=False,
grad_variables=None)
  • tensor: 用于计算梯度的tensor。也就是说这两种方式是等价的:torch.autograd.backward(z) == z.backward()
  • grad_tensors: 在计算矩阵的梯度时会用到。他其实也是一个tensor,shape一般需要和前面的tensor保持一致。
  • retain_graph: 通常在调用一次backward后,pytorch会自动把计算图销毁,所以要想对某个变量重复调用backward,则需要将该参数设置为True
  • create_graph: 当设置为True的时候可以用来计算更高阶的梯度
  • grad_variables: 这个官方说法是grad_variables' is deprecated. Use 'grad_tensors' instead.也就是说这个参数后面版本中应该会丢弃,直接使用grad_tensors就好了。

好了,参数大致作用都介绍了,下面我们看看pytorch为什么设计了grad_tensors这么一个参数,以及它有什么用呢?

还是用代码做个示例

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward()
>>> ...

RuntimeError: grad can be implicitly created only for scalar outputs

当我们运行上面的代码的话会报错,报错信息为RuntimeError: grad can be implicitly created only for scalar outputs

上面的报错信息意思是只有对标量输出它才会计算梯度,而求一个矩阵对另一矩阵的导数束手无策。

X=[x0x1] Z=X+2=[x0+2x1+2]⇒∂Z∂X=?X=[x0x1] Z=X+2=[x0+2x1+2]⇒∂Z∂X=?

那么我们只要想办法把矩阵转变成一个标量不就好了?比如我们可以对z求和,然后用求和得到的标量在对x求导,这样不会对结果有影响,例如:

Zsum=∑zi=x0+x1+8then∂Zsum∂x0=∂Zsum∂x1=1Zsum=∑zi=x0+x1+8then∂Zsum∂x0=∂Zsum∂x1=1

我们可以看到对z求和后再计算梯度没有报错,结果也与预期一样:

x = torch.ones(2,requires_grad=True)
z = x + 2
z.sum().backward()
print(x.grad)
>>> tensor([1., 1.])

我们再仔细想想,对z求和不就是等价于z点乘一个一样维度的全为1的矩阵吗?即sum(Z)=dot(Z,I)sum(Z)=dot(Z,I),而这个I也就是我们需要传入的grad_tensors参数。(点乘只是相对于一维向量而言的,对于矩阵或更高为的张量,可以看做是对每一个维度做点乘)

代码如下:

x = torch.ones(2,requires_grad=True)
z = x + 2
z.backward(torch.ones_like(z)) # grad_tensors需要与输入tensor大小一致
print(x.grad)
>>> tensor([1., 1.])

弄个再复杂一点的:

x = torch.tensor([2., 1.], requires_grad=True).view(1, 2)
y = torch.tensor([[1., 2.], [3., 4.]], requires_grad=True) z = torch.mm(x, y)

print(f"z:{z}")

z.backward(torch.Tensor([[1., 0]]), retain_graph=True)

print(f"x.grad: {x.grad}")

print(f"y.grad: {y.grad}")
>>> z:tensor([[5., 8.]], grad_fn=<MmBackward>)

x.grad: tensor([[1., 3.]])

y.grad: tensor([[2., 0.],

[1., 0.]])

结果解释如下:

总结:

说了这么多,grad_tensors的作用其实可以简单地理解成在求梯度时的权重,因为可能不同值的梯度对结果影响程度不同,所以pytorch弄了个这种接口,而没有固定为全是1。引用自知乎上的一个评论:如果从最后一个节点(总loss)来backward,这种实现(torch.sum(y*w))的意义就具体化为 multiple loss term with difference weights 这种需求了吧。

3|0torch.autograd.grad

torch.autograd.grad(
outputs,
inputs,
grad_outputs=None,
retain_graph=None,
create_graph=False,
only_inputs=True,
allow_unused=False)

看了前面的内容后在看这个函数就很好理解了,各参数作用如下:

  • outputs: 结果节点,即被求导数
  • inputs: 叶子节点
  • grad_outputs: 类似于backward方法中的grad_tensors
  • retain_graph: 同上
  • create_graph: 同上
  • only_inputs: 默认为True, 如果为True, 则只会返回指定input的梯度值。 若为False,则会计算所有叶子节点的梯度,并且将计算得到的梯度累加到各自的.grad属性上去。
  • allow_unused: 默认为False, 即必须要指定input,如果没有指定的话则报错。

4|0参考

【转载】关于grad_tensors的解惑的更多相关文章

  1. 【转】字符编码笔记:ASCII,Unicode和UTF-8

    今天整理笔记,关于NSString转NSData时,什么时候使用NSUTF8StringEncoding,或者NSASCIIStringEncoding,或者 NSUnicodeStringEncod ...

  2. 转载:Python 包管理工具解惑

    Python 包管理工具解惑 本站文章除注明转载外,均为本站原创或者翻译. 本站文章欢迎各种形式的转载,但请18岁以上的转载者注明文章出处,尊重我的劳动,也尊重你的智商: 本站部分原创和翻译文章提供m ...

  3. ASP.NET 跨域请求之jQuery的ajax jsonp的使用解惑 (转载)

    前天在项目中写的一个ajax jsonp的使用,出现了问题:可以成功获得请求结果,但没有执行success方法,直接执行了error方法提示错误——ajax jsonp之前并没有用过,对其的理解为跟普 ...

  4. GCC中-fpic解惑(转载)

    参考: 1.<3.18 Options for Code Generation Conventions>2.<Options for Linking>3.<GCC -fP ...

  5. 转载:第五弹!全球首个微信小程序(应用号)开发教程!通宵吐血赶稿,每日更新!

    博卡君今天继续更新,忙了一天,终于有时间开工写教程.不罗嗦了,今天我们来看看如何实现一些前端的功能和效果. 第八章:微信小程序分组开发与左滑功能实现 先来看看今天的整体思路: 进入分组管理页面--&g ...

  6. (译)iOS Code Signing: 解惑

    子龙山人 Learning,Sharing,Improving! (译)iOS Code Signing: 解惑 免责申明(必读!):本博客提供的所有教程的翻译原稿均来自于互联网,仅供学习交流之用,切 ...

  7. Gulp入门与解惑

    Gulp简介 Gulp.js 是一个自动化构建工具,开发者可以使用它在项目开发过程中自动执行常见任务.Gulp.js是基于 Node.js构建的,利用Node.js流的威力,你可以快速构建项目. 安装 ...

  8. JVM菜鸟进阶高手之路九(解惑)

    转载请注明原创出处,谢谢! 在第八系列最后有些疑惑的地方,后来还是在我坚持不懈不断打扰笨神,阿飞,ak大神等,终于解决了该问题.第八系列地址:http://www.jianshu.com/p/7f7c ...

  9. JVM 菜鸟进阶高手之路九(解惑)

    转载请注明原创出处,谢谢! 在第八系列最后有些疑惑的地方,后来还是在我坚持不懈不断打扰笨神,阿飞,ak大神等,终于解决了该问题.第八系列地址:http://www.cnblogs.com/lirenz ...

随机推荐

  1. 2020杭电多校 10C / HDU 6879 - Mine Sweeper (构造)

    HDU 6879 - Mine Sweeper 题意 定义<扫雷>游戏的地图中每个空白格子的值为其周围八个格子内地雷的数量(即游戏内临近地雷数量的提示) 则一张地图的值\(S\)为所有空白 ...

  2. HDU 1564 Play a game && HDU 2147 kiki's game

    HDU 1564 Play a game题意: 棋盘的大小是n*n.一块石头被放在一个角落的广场上.他们交替进行,8600人先走.每次,玩家可以将石头水平或垂直移动到一个未访问的邻居广场.谁不采取行动 ...

  3. Entity Framework (EF) Core学习笔记 1

    1. Entity Framework (EF) Core 是轻量化.可扩展.开源和跨平台的数据访问技术,它还是一 种对象关系映射器 (ORM),它使 .NET 开发人员能够使用面向对象的思想处理数据 ...

  4. 手摸手带你学移动端WEB开发

    HTML常用标签总结 手摸手带你学CSS HTML5与CSS3知识点总结 手摸手带你学移动端WEB开发 好好学习,天天向上 本文已收录至我的Github仓库DayDayUP:github.com/Ro ...

  5. Kubernets二进制安装(3)之准备签发证书环境

    1.在mfyxw50机器上分别下载如下几个文件:cfssl.cfssl-json.cfssl-certinfo cfssl下载连接地址: https://pkg.cfssl.org/R1.2/cfss ...

  6. 实现 MyBatis 流式查询的方法

    基本概念流式查询指的是查询成功后不是返回一个集合而是返回一个迭代器,应用每次从迭代器取一条查询结果.流式查询的好处是能够降低内存使用.如果没有流式查询,我们想要从数据库取 1000 万条记录而又没有足 ...

  7. webpack 打包性能优化

    webpack 打包性能优化 开启多线程打包 thread-loader https://www.npmjs.com/package/thread-loader https://github.com/ ...

  8. JavaScript code 性能优化

    1 1 1 JavaScript 性能优化 prototype 闭包 Closure 内存泄漏 event system 1 定义类方法以下是低效的,因为每次构建baz.Bar的实例时,都会为foo创 ...

  9. 使用 js 实现一个简易版的 drag & drop 库

    使用 js 实现一个简易版的 drag & drop 库 具有挑战性的前端面试题 H5 DnD js refs https://www.infoq.cn/article/0NUjpxGrqRX ...

  10. Vue 3 In Action

    Vue 3 In Action $ yarn add vue https://v3.vuejs.org demos refs https://v3.vuejs.org/guide/migration/ ...