B. Tell Your World
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Connect the countless points with lines, till we reach the faraway yonder.

There are n points on a coordinate plane, the i-th of which being (i, yi).

Determine whether it's possible to draw two parallel and non-overlapping lines, such that every point in the set lies on exactly one of them, and each of them passes through at least one point in the set.

Input

The first line of input contains a positive integer n (3 ≤ n ≤ 1 000) — the number of points.

The second line contains n space-separated integers y1, y2, ..., yn ( - 109 ≤ yi ≤ 109) — the vertical coordinates of each point.

Output

Output "Yes" (without quotes) if it's possible to fulfill the requirements, and "No" otherwise.

You can print each letter in any case (upper or lower).

Examples
input
5
7 5 8 6 9
output
Yes
input
5
-1 -2 0 0 -5
output
No
input
5
5 4 3 2 1
output
No
input
5
1000000000 0 0 0 0
output
Yes
Note

In the first example, there are five points: (1, 7), (2, 5), (3, 8), (4, 6) and (5, 9). It's possible to draw a line that passes through points 1, 3, 5, and another one that passes through points 2, 4 and is parallel to the first one.

In the second example, while it's possible to draw two lines that cover all points, they cannot be made parallel.

In the third example, it's impossible to satisfy both requirements at the same time.

这题看了高手的代码才会。

题意:给出n个点的坐标,问这n个点能否在都在两条平行的直线上。

(注意题面第二行给出了横坐标- - 我都是一直以为没有横坐标,读了好久题才发现)

解题思路:两条平行线的斜率k是一样的,对前三个坐标a[1],a[2],a[3]进行处理,因为要求每个点都在线上,那么这三个点之间的斜率:

k1=a[2]-a[1];

k2=a[3]-a[2];

k3=(a[3]-a[1])/2;

肯定至少有一个是直线的真正斜率(这点可以画个图仔细想想),再根据直线方程y=kx+b,把这三个斜率对所有点套一下,如果只有

两个不相等的b值,则输出Yes,否则输出No。

附代码:

 1 #include <cstdio>
2 #include <cstring>
3 #include <algorithm>
4 #include <set>
5 using namespace std;
6 const int M = 1111;
7 double nu[M];
8 int n;
9 bool solve(double k){
10 set<double>s;
11 for(int i=1;i<=n;i++){
12 s.insert(nu[i]-i*k);
13 }
14 return s.size()==2;
15 }
16 int main(){
17 scanf("%d",&n);
18 for(int i=1; i<=n; i++) scanf("%lf",&nu[i]);
19 if(solve(nu[2]-nu[1]) || solve(nu[3]-nu[2]) || solve((nu[3]-nu[1])/2))
20 printf("Yes");
21 else printf("No");
22 return 0;
23 }

codeforce 849B的更多相关文章

  1. Codeforce - Street Lamps

    Bahosain is walking in a street of N blocks. Each block is either empty or has one lamp. If there is ...

  2. Codeforce Round #216 Div2

    e,还是写一下这次的codeforce吧...庆祝这个月的开始,看自己有能,b到什么样! cf的第二题,脑抽的交了错两次后过了pretest然后system的挂了..脑子里还有自己要挂的感觉,果然回头 ...

  3. Codeforce 水题报告(2)

    又水了一发Codeforce ,这次继续发发题解顺便给自己PKUSC攒攒人品吧 CodeForces 438C:The Child and Polygon: 描述:给出一个多边形,求三角剖分的方案数( ...

  4. codeforce 375_2_b_c

    codeforce 375_2 标签: 水题 好久没有打代码,竟然一场比赛两次卡在边界条件上....跪 b.题意很简单...纯模拟就可以了,开始忘记了当字符串结束的时候也要更新两个值,所以就错了 #i ...

  5. codeforce 367dev2_c dp

    codeforce 367dev2_c dp 标签: dp 题意: 你可以通过反转任意字符串,使得所给的所有字符串排列顺序为字典序,每次反转都有一定的代价,问你最小的代价 题解:水水的dp...仔细想 ...

  6. 三维dp&codeforce 369_2_C

    三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...

  7. 强连通分量&hdu_1269&Codeforce 369D

    强连通分量 标签: 图论 算法介绍 还记得割点割边算法吗.回顾一下,tarjan算法,dfs过程中记录当前点的时间戳,并通过它的子节点的low值更新它的low,low值是这个点不通过它的父亲节点最远可 ...

  8. 【树状数组】区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D

    [树状数组]区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D PROBLEM 题目描述 初始给定n个卡片拍成一排,其中第i个卡片上的数为x[i]. 有q个询问,每次询问 ...

  9. 解题报告:codeforce 7C Line

    codeforce 7C C. Line time limit per test1 second memory limit per test256 megabytes A line on the pl ...

随机推荐

  1. matlab gui matlab gui 鼠标点击显示图像颜色值

    首先看看效果 ‍ 首先功能说明下,运行后通过myfile菜单打开一幅图片之后在axes中显示,由于要使用图片的放大缩小等功能将figure 的菜单栏与工具栏都一并打开了. 界面编程主要是callbac ...

  2. ElasticSearch-IK分词器和集成使用

    1.查询存在问题分析 在进行字符串查询时,我们发现去搜索"搜索服务器"和"钢索"都可以搜索到数据: 而在进行词条查询时,我们搜索"搜索"却没 ...

  3. winform 添加背景图 闪屏问题解决

    winform中只要添加了背景图片资源,窗体加载显示的时候就会出现不停的闪屏操作,网上找了很多方法,效果都不明显: 然后自己观察和思路:看窗体的加载过程,当有背景图的时候,首先出来的是背景图,之后背景 ...

  4. 一步步使用SpringBoot结合Vue实现登录和用户管理功能

    前后端分离开发是当今开发的主流.本篇文章从零开始,一步步使用SpringBoot结合Vue来实现日常开发中最常见的登录功能,以及登录之后对用户的管理功能.通过这个例子,可以快速入门SpringBoot ...

  5. 什么是STP

    简介 了解STP 配置STP 相关信息 简介 STP(Spanning Tree Protocol)是运行在交换机上的二层破环协议,环路会导致广播风暴.MAC地址表震荡等后果,STP的主要目的就是确保 ...

  6. Unix Socket 代理服务 unix域套接字

    基于Unix Socket的可靠Node.js HTTP代理实现(支持WebSocket协议) - royalrover - 博客园 https://www.cnblogs.com/accordion ...

  7. 知乎社区核心业务 Golang 化实践 - 知乎 https://zhuanlan.zhihu.com/p/48039838

    知乎社区核心业务 Golang 化实践 - 知乎 https://zhuanlan.zhihu.com/p/48039838

  8. Hyper-v安装centos后的网络配置

    修改配置文件 进入目录:cd /etc/sysconfig/network-scripts/ 修改ifcfg-eth0文件(不通机器文件名可能不同,可以通过 ip addr 命令查看网卡名) HWAD ...

  9. Win10安装CUDA 10.2

    目录 一.安装VS2015 二.安装CUDA 10.2 2.1 安装前工作 2.2 CUDA 10.2下载安装过程 2.2.1 下载CUDA 10.2 2.2.1.1 官网下载地址 2.2.1.2 网 ...

  10. 深度学习论文翻译解析(十八):MobileNetV2: Inverted Residuals and Linear Bottlenecks

    论文标题:MobileNetV2: Inverted Residuals and Linear Bottlenecks 论文作者:Mark Sandler Andrew Howard Menglong ...