D. Regular Bridge 解析(思維、圖論)
Codeforce 550 D. Regular Bridge 解析(思維、圖論)
今天我們來看看CF550D
題目連結
題目
給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每個點的degree都是\(k\)的無向圖。
前言
學到了Handshaking Lemma
想法
首先既然要有一個Bridge,我們就從已經有一個Bridge的圖開始構造。
可能會發現到\(k=2\)無解,而\(k=3\)(\(k\)是奇數)有以下這個解(我一開始根本沒想到):
首先只考慮Bridge的一邊,然後必然有\(k-1=2\)條邊連出去,接著我們再多連出去一個點(2---4,3---5),然後\(leaf(點4,5)\)連到右方所有還沒滿的點,接著\(leaf\)再兩兩連起來。
接著證明當\(k\mod 2=0\)時無解:首先只考慮Bridge的一邊,接著我們會發現連接Bridge的那個點的度數是\(k-1\),是奇數,而其他點的度數都是\(k\),是偶數。根據Handshaking Lemma,無解。(如果不知道這個Lemma也可以直接證明不存在,只是比較繁瑣)
程式碼:
const int _n=1e6+10;
int t,n,k;
vector<PII> e;
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>k;if(k%2==0){cout<<"NO\n";return 0;}
rep(i,2,k+1)e.pb({1,i});rep(i,k+1,2*k)rep(j,2,k+1)e.pb({i,j});
for(int i=k+1;i<=2*k-2;i+=2)e.pb({i,i+1});
cout<<"YES\n"<<4*k-2<<' '<<2*SZ(e)+1<<'\n';
rep(i,0,SZ(e))cout<<e[i].fi<<' '<<e[i].se<<'\n';
rep(i,0,SZ(e))cout<<e[i].fi+2*k-1<<' '<<e[i].se+2*k-1<<'\n';
cout<<1<<' '<<2*k<<'\n';
return 0;
}
標頭、模板請點Submission看
Submission
D. Regular Bridge 解析(思維、圖論)的更多相关文章
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- C. Bank Hacking 解析(思維)
Codeforce 796 C. Bank Hacking 解析(思維) 今天我們來看看CF796C 題目連結 題目 略,請直接看原題. 前言 @copyright petjelinux 版權所有 觀 ...
- E. Xenia and Tree 解析(思維、重心剖分)
Codeforce 342 E. Xenia and Tree 解析(思維.重心剖分) 今天我們來看看CF342E 題目連結 題目 給你一棵樹,有兩種操作,把某點標成紅色或者查詢離某點最近的紅點有多遠 ...
- B. Once Again... 解析(思維、DP、LIS、矩陣冪)
Codeforce 582 B. Once Again... 解析(思維.DP.LIS.矩陣冪) 今天我們來看看CF582B 題目連結 題目 給你一個長度為\(n\)的數列\(a\),求\(a\)循環 ...
- A. Peter and Snow Blower 解析(思維、幾何)
Codeforce 613 A. Peter and Snow Blower 解析(思維.幾何) 今天我們來看看CF613A 題目連結 題目 給你一個點\(P\)和\(n\)個點形成的多邊形(照順或逆 ...
- B. Two Fairs 解析(思維、DFS、組合)
Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...
- B. Game of the Rows 解析(思維)
Codeforce 839 B. Game of the Rows 解析(思維) 今天我們來看看CF839B 題目連結 題目 有如下圖片所示的飛機座位\(n\)排,和\(k\)隊士兵,每隊數量不一定. ...
- F. Make It Connected 解析(思維、MST)
Codeforce 1095 F. Make It Connected 解析(思維.MST) 今天我們來看看CF1095F 題目連結 題目 給你\(n\)個點,每個點\(u\)還有一個值\(a[u]\ ...
- A. Arena of Greed 解析(思維)
Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...
随机推荐
- 面经手册 · 第12篇《面试官,ThreadLocal 你要这么问,我就挂了!》
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 说到底,你真的会造火箭吗? 常说面试造火箭,入职拧螺丝.但你真的有造火箭的本事吗,大 ...
- 大白话谈JVM的类加载机制
前言 我们很多小伙伴平时都是做JAVA开发的,那么作为一名合格的工程师,你是否有仔细的思考过JVM的运行原理呢. 如果懂得了JVM的运行原理和内存模型,像是一些JVM调优.垃圾回收机制等等的问题我们才 ...
- SpringBoot2.3中@Async实现异步
启动加上@EnableAsync ,需要执行异步方法上加入@Async. 在方法上加上@Async之后 底层使用多线程技术. 不使用异步 先关代码: package com.yiyang.myfirs ...
- 借助C++探究素数的分布
这里使用的区间是36,144,576,2304,9216,36864,147456,589824,2359296,9437184.至于这个区间是怎么得到的,感兴趣的同鞋可前往(https://www. ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- Lyndon words学习笔记
Lyndon words 定义: 对于一个字符串\(S\),若\(S\)的最小后缀是其本身,则\(S\)为一个\(lyndon\)串; 记为\(S\in L\); 即: \[S \in L \begi ...
- 给Python IDLE添加行号显示
转载:https://blog.csdn.net/howard2005/article/details/104112297 文章目录一.引出问题1.Spyder编辑Python程序能显示行号2.Pyt ...
- JavaFX ComboBox的选中事项
参考1:https://blog.csdn.net/mexel310/article/details/37909205 参考2:https://blog.csdn.net/maosijunzi/art ...
- 【学习笔记】Dirichlet前缀和
题目戳我 \(\text{Solution:}\) 观察到一个\(a_i\)若对\(a_j\)有贡献,则必须\(i\)的所有质因子幂次小于等于\(j\)的质因子幂次. 于是,我们可以枚举质数的倍数并累 ...
- 如何使用 dotTrace 来诊断 netcore 应用的性能问题
最近在为 Newbe.Claptrap 做性能升级,因此将过程中使用到的 dotTrace 软件的基础用法介绍给各位开发者. Newbe.Claptrap 是一个用于轻松应对并发问题的分布式开发框架. ...