Description


The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems. 

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above. 

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit. 

Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output

216
30
#include<stdio.h>
#define A 30
int a[A][A]; //邻接矩阵
int lowcost[A]; //保存已在生成树中的顶点到未在生成树中顶点的最短长度
// 找出权值最小的两个顶点的位置 ,并返回其中一个顶点的位置
int First(int n){
int i,j,min,flag;
min=100;
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
if(min>a[i][j]&&a[i][j]!=0){
min=a[i][j];
flag=i;
}
}
}
return flag;
}
//找出lowcost[]中最短的长度
int minimum(int n){
int i,min,flag=1;
min=100;
for(i=1;i<=n;i++){
if(min>lowcost[i]&&lowcost[i]!=0){
flag=i;
min=lowcost[i];
}
}
return flag;
}
void Tree(int n){
int i,j,k,sum=0;
k = First(n); //得到位置
for(i=1;i<=n;i++){
if(i!=k){
lowcost[i]=a[k][i]; //初始化lowcost[]
}
}
lowcost[k]=0; //每次加入生成树中的顶点对应的位置的权值更新为0
for(i=1;i<n;i++){
k=minimum(n); //获取locost[]中最小的位置
sum=sum+lowcost[k]; //求路径长度值和
lowcost[k]=0; //每次加入生成树中的顶点对应的位置的权值更新为0
//更新lowcost[],如果找到的最小位置到其他顶点的权值小于在lowcost[]中的,就更新为较小的
for(j=1;j<=n;j++){
if(a[k][j]<lowcost[j]&&j!=k){
lowcost[j]=a[k][j];
}
}
}
printf("%d\n",sum);
}
int main()
{
int N,i,j,k,x,y,z;
char ch1[2],ch2[2];
for(i=1;i<=A;i++)
for(j=1;j<=A;j++)
a[i][j]= 100;
scanf("%d",&N);
while(N!=0){
for(i=1;i<N;i++){
scanf("%s %d",ch1,&j);
y=ch1[0]-'A'+1;
for(k=1;k<=j;k++){
scanf("%s %d",ch2,&x); //接收字符
z=ch2[0]-'A'+1; //保存两点间的权值
a[y][z]=x;
a[z][y]=x;
}
}
for(i=1;i<=N;i++){
for(j=1;j<=N;j++) printf(" %d ",a[i][j]);
printf("\n");
} Tree(N);
//执行一次后初始化邻接矩阵
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
a[i][j]= 100;
scanf("%d",&N);
}
return 0;
}

  

puk1251 最小生成树的更多相关文章

  1. 最小生成树(Kruskal算法-边集数组)

    以此图为例: package com.datastruct; import java.util.Scanner; public class TestKruskal { private static c ...

  2. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  3. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  4. 【BZOJ 1016】【JSOI 2008】最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 统计每一个边权在最小生成树中使用的次数,这个次数在任何一个最小生成树中都是固定的(归纳证明). ...

  5. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  6. Delaunay剖分与平面欧几里得距离最小生成树

    这个东西代码我是对着Trinkle的写的,所以就不放代码了.. Delaunay剖分的定义: 一个三角剖分是Delaunay的当且仅当其中的每个三角形的外接圆内部(不包括边界)都没有点. 它的存在性是 ...

  7. 最小生成树(prim&kruskal)

    最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法:                  原始的加权连通图——————D被选作起点,选与之相连的权值 ...

  8. 最小生成树 prime poj1258

    题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...

  9. 最小生成树 prime + 队列优化

    存图方式 最小生成树prime+队列优化 优化后时间复杂度是O(m*lgm) m为边数 优化后简直神速,应该说对于绝大多数的题目来说都够用了 具体有多快呢 请参照这篇博客:堆排序 Heapsort / ...

随机推荐

  1. 刷题[WUSTCTF2020]朴实无华

    解题思路 打开是一个这样的页面,查看源码发现什么人间极乐bot,试试是不是robots.txt,查看发现类似flag文件,查看发现是假的flag,但是burp抓包后发现,返回的头部有信息 源码出来了, ...

  2. 使用SSM框架实现Sql数据导出成Excel表

    SSM框架实现SQL数据导出Excel 思路 首先在前端页面中添加一个导出功能的button,然后与后端controller进行交互. 接着在相应的controller中编写导出功能方法. 方法体: ...

  3. 049 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 11 break语句

    049 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 11 break语句 本文知识点:break语句 break语句 break语句前情回顾 1.swi ...

  4. sublime text3配置Python2、Python3的编译环境

    由于Python2.Python3使用量都很高,Python3虽然是未来趋势,但是目前个别库还是只支持Python2.所以,很多人会选择在电脑上安装两个版本的Python,那么使用sublime执行代 ...

  5. Win32控制台、Win32项目、MFC项目、CLR控制台、CLR空项目、空项目区别

    转载:https://blog.csdn.net/zfmss/article/details/79244696 1.Win32控制台 初始代码模版以main为程序入口,默认情况下,只链接C++运行时库 ...

  6. Matlab中num2str函数的用法

    转载:https://blog.csdn.net/SMF0504/article/details/51836062 函数功能: 把数值转换成字符串, 转换后可以使用fprintf或disp函数进行输出 ...

  7. STM32F103C8T6-CubeMx串口收发程序详细设计与测试(1)——CubeMx生成初始代码

    STM32F103C8T6-CubeMx串口收发程序详细设计与测试(1)--CubeMx生成初始代码 关键词:STM32F103C8T6 CubeMX UART 详细程序设计 1.开发环境 (1)ST ...

  8. Flutter沉浸式状态栏/AppBar导航栏/仿咸鱼底部凸起导航

    Flutter中如何实现沉浸式透明Statusbar状态栏效果? 如下图:状态栏是指android手机顶部显示手机状态信息的位置.android 自4.4开始新加入透明状态栏功能,状态栏可以自定义颜色 ...

  9. Thinkphp中D方法和M方法的区别

    两者共同点都是实例化模型的,而两者不同点呢?一起来看一下: $User = D('User');括号中的参数User,对应的模型类文件的 \Home\Model\UserModel.class.php ...

  10. ASP。NET MVC (NetCore 2.0)用于处理实体框架、DbContexts和对象的通用控制器和视图

    下载source - 1.5 MB 介绍 本文的源代码已更新到NetCore 2.0 ASP.净MVC项目. 当我们开始开发一个ASP.在Microsoft Visual Studio中,我们发现通过 ...