如果一个点需要经过奇数次我们就称其为奇点,偶数次称其为偶点。

考虑不合法的情况,有任意两个奇点不连通(自己想想为什么)。

那么需要处理的部分就是包含奇点的唯一一个连通块。先随意撸出一棵生成树,然后正常地 dfs 下去。显然,叶子结点会成为奇点,非叶子结点会成为偶点。

当然这会存在不合法的情况,即我们需要改变一些结点的奇偶性。发现 dfs 到 \(u\) 结点的过程中我们可以进行这样一种操作,\(u\to v\to u(fa_v=u)\),它同时改变了 \(u\) 和 \(v\) 的奇偶性。所以我们在处理完以 \(v\) 为根的子树后(即子树除了 \(v\) 都合法),如果 \(v\) 还不合法,我们就对 \(v\) 和 \(v\) 的父亲 \(u\) 进行这个操作,使得 \(v\) 合法。

最后只剩下根结点,如果根结点不合法就去掉最后一步(不回到根结点)。

每个非根结点至多做一次操作,每次操作花费 \(2\),再加上 dfs 的 \(2n\),所以序列长度至多是 \(4n-1\),可以放心通过。

时间复杂度 \(O(n+m)\)~

code:

#include<bits/stdc++.h>
using namespace std;
#define N 100005
#define For(i,x,y)for(i=x;i<=(y);i++)
struct node
{
bool used;
int next,to;
}e[200005];
bool vis[N],rem[N];
int opt[400005],head[N],g,cnt;
int read()
{
int A;
bool K;
char C;
C=A=K=0;
while(C<'0'||C>'9')K|=C=='-',C=getchar();
while(C>'/'&&C<':')A=(A<<3)+(A<<1)+(C^48),C=getchar();
return(K?-A:A);
}
inline void add(int u,int v)
{
e[++g].to=v;
e[g].next=head[u];
head[u]=g;
}
void dfs(int u)
{
int i,v;
vis[u]=1;
for(i=head[u];i;i=e[i].next)
{
v=e[i].to;
if(!vis[v])dfs(v),e[i].used=1;
}
}
bool work(int u,int fa)
{
int i,v;
bool bo=1,tmp;
opt[++cnt]=u;
for(i=head[u];i;i=e[i].next)
if(e[i].used)
{
v=e[i].to;
if(v==fa)continue;
tmp=work(v,u);
opt[++cnt]=u;
bo^=1;
if(!tmp)
{
opt[++cnt]=v;
opt[++cnt]=u;
bo^=1;
}
}
return bo==rem[u];
}
void write(int X)
{
if(X<0)putchar('-'),X=-X;
if(X>9)write(X/10);
putchar(X%10|48);
}
int main()
{
int n,m,i,u,v;
n=read(),m=read();
For(i,1,m)
{
u=read(),v=read();
add(u,v),add(v,u);
}
For(i,1,n)rem[i]=read();
For(u,1,n)
if(rem[u]&1)break;
dfs(u);
For(i,1,n)
if(!vis[i]&&rem[i]&1)puts("-1"),exit(0);
if(!work(u,0))cnt--;
write(cnt);
putchar('\n');
For(i,1,cnt)write(opt[i]),putchar(' ');
return 0;
}

CF453C Little Pony and Summer Sun Celebration的更多相关文章

  1. CF453C Little Pony and Summer Sun Celebration(构造、贪心(?))

    CF453C Little Pony and Summer Sun Celebration 题解 这道题要求输出任意解,并且路径长度不超过4n就行,所以给了我们乱搞构造的机会. 我这里给出一种构造思路 ...

  2. CF453C Little Pony and Summer Sun Celebration (DFS)

    http://codeforces.com/contest/456  CF454E Codeforces Round #259 (Div. 1) C Codeforces Round #259 (Di ...

  3. codeforces 453C Little Pony and Summer Sun Celebration

    codeforces 453C Little Pony and Summer Sun Celebration 这道题很有意思,虽然网上题解很多了,但是我还是想存档一下我的理解. 题意可以这样转换:初始 ...

  4. [CF453C] Little Poney and Summer Sun Celebration (思维)

    [CF453C] Little Poney and Summer Sun Celebration (思维) 题面 给出一张N个点M条边的无向图,有些点要求经过奇数次,有些点要求经过偶数次,要求寻找一条 ...

  5. CF 453C. Little Pony and Summer Sun Celebration

    CF 453C. Little Pony and Summer Sun Celebration 构造题. 题目大意,给定一个无向图,每个点必须被指定的奇数或者偶数次,求一条满足条件的路径(长度不超\( ...

  6. CF453C-Little Pony and Summer Sun Celebration【构造】

    正题 题目链接:https://www.luogu.com.cn/problem/CF453C 题目大意 \(n\)个点\(m\)条边的一张无向图,每个节点有一个\(w_i\)表示该点需要经过奇数/偶 ...

  7. codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)

    题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...

  8. Codeforces 454E. Little Pony and Summer Sun Celebration

    题意:给n个点m条边的无向图,并给出每个点的访问次数奇偶,求构造一条满足条件的路径(点和边都可以走). 解法:这道题还蛮有意思的.首先我们可以发现在一棵树上每个儿子的访问次数的奇偶是可以被它的父亲控制 ...

  9. codeforces Round #259(div2) E解决报告

    E. Little Pony and Summer Sun Celebration time limit per test 1 second memory limit per test 256 meg ...

随机推荐

  1. vue 路劲

    <style scoped src="../assets/css/f_information.css">@import url("../assets/css/ ...

  2. centos7安装mongodb4.0教程

    1.配置软件仓库: vim /etc/yum.repos.d/mongodb-org-4.0.repo [mongodb] name=MongoDB baseurl=https://repo.mong ...

  3. Java学习的第四十二天

    1.例4.7弦截法求方程f(x)=x^3-5x^2+16x-80=0的根 import java.util.Scanner; import java.lang.*; public class cjav ...

  4. Java学习的第二十八天

    1.Scanner类 序列化 将实体类标注为可序列化 2.不明白 3.明天学习反序列化,transient关键字,序列化一组对象

  5. Django+Celery+xadmin实现异步任务和定时任务

    Django+Celery+xadmin实现异步任务和定时任务 关注公众号"轻松学编程"了解更多. 一.celery介绍 1.简介 [官网]http://www.celerypro ...

  6. CSP-S 2020模拟训练题1-信友队T1 四平方和

    题意简述 \(n\)是正整数,其四个最小的因子分别为\(d_1,d_2,d_3,d_4\). 求对于所有的\(n \le m\)满足 \[d_1^2+d_2^2+d_3^2+d_4^2=n \] 的\ ...

  7. linux-挂载NFS网络文件系统教程

    目录 前言 链接 参考 笔录草稿 NFS环境搭建 前言 本文实现需要联网 链接 野火NFS介绍 NFS详细介绍 NFS简要介绍 参考 上面链接 笔录草稿 NFS环境搭建 一些目标配置 服务主机共享目录 ...

  8. ngx instance

    首先看下 连接池的获取以及释放 ngx_connection_t * ngx_get_connection(ngx_socket_t s, ngx_log_t *log) //从连接池中获取一个ngx ...

  9. 储存与RAID--独立磁盘阵列

    存储:  专门用来插硬盘的机器,作用是增加插口,可以多插硬盘. 这种有策略保证硬盘坏了,数据不丢.而本地磁盘坏了,会导致数据丢失,故一般操作系统放在本地磁盘.而数据放在存储盘. 存储里依然有:cpu( ...

  10. fio测试ceph的filestore

    前言 fio是一个适应性非常强的软件,基本上能够模拟所有的IO请求,是目前最全面的一款测试软件,之前在看德国电信的一篇分享的时候,里面就提到了,如果需要测试存储性能,尽量只用一款软件,这样从上层测试到 ...