题意

给定数组\(a(\left| a \right|\leq 10^5)\)和整数\(k(2\leq k \leq 100)\),问满足一下条件的二元组\(<i,j>\)的数目:

  • \(1 \leq i <j\leq n\)
  • \(\exist x,a_i \cdot \ a_j=x^k\)

解题思路

其实就是求

\[\sum_{i=1}^{n-1}\sum_{j=i+1}^n \left [ a_i \cdot \ a_j=x^k\right]
\]

把\(x\)提出来,式子变为

\[\sum_{i=1}^n\sum_{x=1}^{x^k\leq10^{10}} cnt_{x^k/a_i},其中cnt_j表示当前j出现的次数
\]

这样求的复杂度是\(O(n10^{\frac{10}{k}})\),在\(k \geq 3\)的时候是足够优秀的,所以需要特判一下\(k=2\)的情况。

如果将整数看成多个素数的乘积,即\(n=\Pi_i p_i^{x_i}\)

那么两个整数相乘的结果是平方数\(\Leftrightarrow\)对应素数的幂次应该同奇偶

所以用一个bitset表示,用map记录一下,这个问题就解决了

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn=1e5+5;
const int cntp=1e4+5; //1e5内素数的个数,一开始bitset开1e5的大小MLE了
unordered_map<bitset<cntp>,int>mp;
int n,m,k,a[maxn],cnt[maxn],p[maxn],tot;
ll ans,x[maxn];
inline ll qp(ll a,ll b){
ll res=1;
while(b){
if(b&1)res=res*a;
a=a*a;
b>>=1;
}
return res;
}
inline bool check(int x){
for(int i=2;i<=sqrt(x);i++){
if(x%i==0)return false;
}
return true;
}
int main()
{
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)scanf("%d",&a[i]); if(k==2){ for(int i=2;i<maxn;i++)if(check(i))p[++tot]=i; bitset<cntp>b;
for(int i=1;i<=n;i++){
b.reset(); b.set(0);
ll tmp=a[i];
int cnt=0;
for(int j=1;j<=tot;j++){
while(tmp%p[j]==0){++cnt; tmp/=p[j];}
if(cnt&1)b.set(j);
cnt=0;
if(tmp==1)break;
}
ans+=mp[b];
mp[b]++;
}
}
else{
for(ll i=1;;i++){
x[i]=qp(i,k);
if(x[i]>=1e10){
m=i;
break;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(a[i]>x[j])continue;
if(x[j]%a[i]==0 && x[j]/a[i]<maxn){
ans+=cnt[x[j]/a[i]];
}
}
++cnt[a[i]];
}
}
printf("%lld\n",ans);
return 0;
}

Codeforces1247D Power Products 暴力+优化的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

  2. [CodeForces - 1225D]Power Products 【数论】 【分解质因数】

    [CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ...

  3. [Codeforces 1246B] Power Products (STL+分解质因数)

    [Codeforces 1246B] Power Products (STL+分解质因数) 题面 给出一个长度为\(n\)的序列\(a_i\)和常数k,求有多少个数对\((i,j)\)满足\(a_i ...

  4. [TJOI2017]城市 【树的直径+暴力+优化】

    Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...

  5. 牛客寒假基础集训营 | Day1 E-rin和快速迭代(暴力 + 优化)

    E-rin和快速迭代 题目描述 rin最近喜欢上了数论. 然而数论实在太复杂了,她只能研究一些简单的问题. 这天,她在研究正整数因子个数的时候,想到了一个"快速迭代"算法.设 f( ...

  6. tokitsukaze and RPG(暴力优化)

    链接:https://ac.nowcoder.com/acm/contest/308/B 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...

  7. (暴力+优化)学渣的逆袭 -- zzuli -- 1785

    http://acm.zzuli.edu.cn/problem.php?id=1785 学渣的逆袭 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 82  ...

  8. POJ 2406 Power Strings 暴力

    emmmm 显然的是a串长度是s串长度的因数 我们可以暴力枚举因数然后暴力check #include<cstdio> #include<algorithm> #include ...

  9. 124_Power Pivot&Power BI DAX优化计算最大连续次数

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.背景 最大连续次数或者是最大连续子序列问题,在DAX中如何快速计算呢? 思路 1.N-1:按照INDEX错位 2.ST ...

随机推荐

  1. python1.2元组与字典:

    #定义元组(),元组与列表类似但元素不可以更改a=(1,2,3,4,5,6,"a","b","c","d"," ...

  2. Python Tricks —— 使用 pywinrm 远程控制 Windows 主机

    启用 WinRM 远程服务: winrm quickconfig 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不 ...

  3. C#/.Net集成RabbitMQ

    RabbitMQ简介 消息 (Message) 是指在应用间传送的数据.消息可以非常简单,比如只包含文本字符串. JSON 等,也可以很复杂,比如内嵌对象. 消息队列中间件 (Message Queu ...

  4. Catalina 默认使用zsh了,你可习惯

    zsh 成为默认 shell 淘汰掉我的旧MBP换新后,欢天喜地打开Terminal,感觉有点不对,提示符什么时候变成了 %. 查询了一些资料发现,原来在2019年WWDC期间,苹果推出了macOS ...

  5. C#LeetCode刷题之#257-二叉树的所有路径(Binary Tree Paths)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4082 访问. 给定一个二叉树,返回所有从根节点到叶子节点的路径. ...

  6. JavaScript package.json里添加git-cz

    git-cz官网 0.目的 => 替代git commit, 丰富提交的内容 1.安装包 npm install commitizen cz-conventional-changelog --s ...

  7. 每日一道 LeetCode (15):二进制求和

    每天 3 分钟,走上算法的逆袭之路. 前文合集 每日一道 LeetCode 前文合集 代码仓库 GitHub: https://github.com/meteor1993/LeetCode Gitee ...

  8. 代码优化与sql优化---未完待续

    万丈高楼平地起,还是得打一个好地基呀 减少对变量对重复计算 //一般这么写 for (int i = ; i < list.size(); i++) {...} //建议修改为: for (in ...

  9. Vue+Spring Boot 前后端分离的商城项目开源啦!

    新蜂商城 Vue 移动端版本开源啦! 去年开源新蜂商城项目后,就一直在计划这个项目 Vue 版本的改造,2020 年开始开发并且自己私下一直在测试,之前也有文章介绍过测试过程和存在的问题,修改完成后, ...

  10. vue2.0从头开发项目管理系统

    1.自己的github建一个项目. 2.本地vue2.0项目初始化. 安装node.js,检查node版(node -v). 安装webpack(npm install webpack -g),检查w ...