题目链接

题目背景

题目描述

在一个n*m 的矩阵A 的所有位置中随机填入0 或1,概率比为x : y。令B[i]=a[i][1]+a[i][2]+......+a[i][m],求min{B[i]}的期望,并将期望乘以(x + y)^nm 后对1e9+7取模。

输入输出格式

输入格式:

共一行包含四个整数n,m,x ,y。

输出格式:

共一行包含一个整数ans,表示期望乘以(x + y)^nm 后模1e9+7的值。

输入输出样例

输入样例#1:

2 2 1 1
输出样例#1:

10

说明

对于20% 的数据:n,m,x,y<=3

对于40% 的数据:n,m,x,y<= 70

对于70% 的数据:n,m,x,y<=5000

对于100% 的数据:n,m,x,y<=200000

数学知识:

数学期望是试验中所有可能结果的概率乘以其结果的总和,它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的期望——期望值也许与每一个结果都不相等。换句话说,期望值是该变量取值的平均数,但并不一定包含在变量的输出值集合里。

在本题中,期望E =0*P(min{B[i]}=0)+1*P(min{B[i]}=1)+2*P(min{B[i]}=2)+......+m*P(min{B[i]}=m)。

题目要求将期望乘以(x + y)^nm,可以等价于:

对于矩阵中的每一个元素暴力枚举x+y 次取值,其中x 次为0,y 次为1,一共得到(x+y)^nm 个矩阵,分别计算其min{B[i]}的值并求和。

题目来源:江苏省常州高级中学 在此鸣谢

题解:

20分做法:见上文数学知识中的“等价于”部分。

30,70分做法:不同的DP。(DP蒟蒻表示并不会写这个部分分QAQ)

100分做法:

预备知识:

二项分布(苏教版数学选修2-3内容)。

$\because$对于矩阵中任意一行,情况均相同,记矩阵中某行元素之和为$B$。
由二项分布知,每一个元素为0的概率为$\frac{x}{x+y}$,为1的概率为$\frac{y}{x+y}$。
$\therefore P_{B=i}=C^{m}_{i}(\frac{x}{x+y})^{m-i}\cdot(\frac{y}{x+y})^{i}$
=$\frac{C^m_i \cdot x^{m-i} \cdot y^i}{(x+y)^m}$
在$min_B=i$的情况下,对于每一行的$B$,均有$B \geq i$,$\because \exists B=i$,也就是要除去每一行的$B$都大于$i$的情况。
$\therefore P_{(min_{B}=i)}=P^n_{B \geq i}-P^n_{B>i}$
$=P^n_{B \geq i}-P^n_{b \geq i+1}$。
$\therefore E=\sum_{i=0}^{m}i \cdot P_{min_{B}=i}$
$=\sum_{i=1}^{m}i \cdot P^n_{B \geq i}-i \cdot P^n_{b \geq i+1}$
$=P^n_{B \geq 1}-P^n_{B \geq 2}+2P^n_{B \geq 2}-2P^n_{B \geq 3}+ \cdots -m \cdot P^n_{B \geq m+1}$
$\because P_{B \geq m+1}=0$
$\exists E=\sum_{i=1}^{m}P^{n}_{B \geq i}$.
又$\because P_{B \geq i}=P_{B=i}+P_{B=i+1}+ \cdots +P_{B=m}$
$\therefore E=\sum_{i=1}^{m}(\sum_{j=i}^{m}P_{B=j})^{n}$
$=\sum_{i=1}^{m}(\sum_{j=i}^{m}\frac{C_{m}^{j} \cdot x^{m-j} \cdot y^j}{(x+y)^m})^n$
$\therefore ans=(x+y)^{m \cdot n}\cdot E=\sum_{i=i}^{m}(\sum_{j=i}^{m}C_{m}^j \cdot x^{m-j} \cdot y^j)^n$
$\because m,x,y$给定
$\therefore $记$C_{m}^{j}x^{m-j} \cdot y^{j}=A_{j},S_{j}=\sum_{i=1}^{j}A_i$
$\therefore ans=\sum_{i=1}^{m}(\sum_{j=i}^{m}C_{m}^j \cdot x^{m-j} \cdot y^j)^n$
$=\sum_{i=1}^{m}(S_{m}-S_{i-1})^n$
$O_{(n)}$预处理出$C_{m}^{i}$,随后计算$A_{i},S_{i}$,求和即可。
一道裸的数学题……

代码:

 1 #include<bits/stdc++.h>
2 #define LL long long
3 #define f(m,j) c[j]*pow_mod(y,j)%MOD*pow_mod(x,m-j)%MOD
4 using namespace std;
5 const int maxn=2e5+10,MOD=1e9+7;
6 LL fac[maxn],infac[maxn],c[maxn];
7 LL a[maxn],s[maxn];
8 int n,m,x,y;LL ans=0;
9 LL pow_mod(LL a,int k)
10 {
11 LL ans=1;
12 for(;k;a=a*a%MOD,k>>=1){if(k&1){ans=ans*a%MOD;}}
13 return ans;
14 }
15 void init()
16 {
17 int i,j;
18 fac[0]=1;
19 for(i=1;i<=m;i++){fac[i]=fac[i-1]*i%MOD;}
20 for(i=0;i<=m;i++){infac[i]=pow_mod(fac[i],MOD-2);}
21 for(i=0;i<=m;i++){c[i]=fac[m]*infac[i]%MOD*infac[m-i]%MOD;}
22 }
23 int main()
24 {
25 int i,j;LL tmp;
26 cin>>n>>m>>x>>y;
27 init();
28 for(i=1;i<=m;i++){a[i]=f(m,i);s[i]=(s[i-1]+a[i])%MOD;}
29 for(i=1;i<=m;i++)
30 {
31 tmp=(s[m]-s[i-1]+MOD)%MOD;
32 ans=(ans+pow_mod(tmp,n))%MOD;
33 }
34 cout<<ans;
35 return 0;
36 }

Luogu T7468 I liked Matrix!的更多相关文章

  1. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

  2. luogu题解 UVA11992 【Fast Matrix Operations】

    题目链接: https://www.luogu.org/problemnew/show/UVA11992 题目大意: 一个r*c的矩阵,一开始元素都是0,然后给你m次三种操作,分别是将一个子矩阵中所有 ...

  3. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

  4. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  5. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  6. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  7. Luogu T7152 细胞(递推,矩阵乘法,快速幂)

    Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...

  8. Luogu P4643 【模板】动态dp

    题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...

  9. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

随机推荐

  1. Mac最新Flutter环境搭建运行和对比理解声明式UI

    前言 这段时间一直都在学习和写关于SwiftUI的东西,前面也总结了四篇文章来大体上说了下Demo中功能实现的一些细节,后面准备开始了解学习一下Flutter,争取在年前能再用Flutter写一份项目 ...

  2. PAT天梯赛练习 L3-003 社交集群 (30分) DFS搜索

    题目分析: 一共有N个编号为1~1000的人,以及一共有编号为1~1000种不同的兴趣,在题目给出1~N编号的人员每个人喜欢的兴趣的id后,要求统计出不同的人员集合的个数以及每个人员几个的人数从大到小 ...

  3. 那些最全面的Windows10安装pytorch踩过的坑以及如何应用

    那些最全面的Windows10安装pytorch踩过的坑以及如何应用 一.pytorch简介 2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch.它是一个基 ...

  4. Loadrunner录制脚本与编写脚本的区别

    异同点: 1.录制的和编写的脚本质量上没有区别 2.性能脚本关心的是用户和服务器的数据交互,从这点上来看,录制和编写也没有区别,手动编写脚本也可以写出很真实的脚本 3.能录制的情况下,就录制吧,谁每天 ...

  5. xray—学习笔记

    长亭xray扫描器 简介 xray (https://github.com/chaitin/xray) 是从长亭洞鉴核心引擎中提取出的社区版漏洞扫描神器,支持主动.被动多种扫描方式,自备盲打平台.可以 ...

  6. AQS之ReentrantReadWriteLock精讲分析上篇

    1.用法 1.1 定义一个安全的list集合 public class LockDemo { ArrayList<Integer> arrayList = new ArrayList< ...

  7. Python3.9的http.client.py下的HTTPMessage类中的方法getallmatchingheaders的bug修复建议

    在官方网站已经提交相关issue,不过目前看好像还没有修复.具体的bug位置为: http文件夹下的client.py文件,代码位置为:类HTTPMessage下的方法getallmatchinghe ...

  8. 08--Docker安装Mysql

    1.在hub.docker.com中查找5.7版本 2.拉取mysql docker pull mysql:5.7 3.启动mysql镜像 docker run -p 3306:3306 --name ...

  9. postgres模糊匹配大杀器

    ArteryBase-模糊匹配大杀器 问题背景 随着pg越来越强大,abase目前已经升级到5.0(postgresql10.4),目前abase5.0继承了全文检索插件(zhparser),使用全文 ...

  10. 入门OJ:简单的网络游戏

    题目描述 在某款极具技术含量的网络游戏中,佳佳靠着他的聪明智慧垄断了游戏中的油田系统.油田里有许多油井,这些油井排成一个M*N的矩形.每个油井都有一个固定的采油量.每两个相邻的油井之间有一条公路,这些 ...