Luogu T7468 I liked Matrix!
题目背景
无
题目描述
在一个n*m 的矩阵A 的所有位置中随机填入0 或1,概率比为x : y。令B[i]=a[i][1]+a[i][2]+......+a[i][m],求min{B[i]}的期望,并将期望乘以(x + y)^nm 后对1e9+7取模。
输入输出格式
输入格式:
共一行包含四个整数n,m,x ,y。
输出格式:
共一行包含一个整数ans,表示期望乘以(x + y)^nm 后模1e9+7的值。
输入输出样例
2 2 1 1
10
说明
对于20% 的数据:n,m,x,y<=3
对于40% 的数据:n,m,x,y<= 70
对于70% 的数据:n,m,x,y<=5000
对于100% 的数据:n,m,x,y<=200000
数学知识:
数学期望是试验中所有可能结果的概率乘以其结果的总和,它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的期望——期望值也许与每一个结果都不相等。换句话说,期望值是该变量取值的平均数,但并不一定包含在变量的输出值集合里。
在本题中,期望E =0*P(min{B[i]}=0)+1*P(min{B[i]}=1)+2*P(min{B[i]}=2)+......+m*P(min{B[i]}=m)。
题目要求将期望乘以(x + y)^nm,可以等价于:
对于矩阵中的每一个元素暴力枚举x+y 次取值,其中x 次为0,y 次为1,一共得到(x+y)^nm 个矩阵,分别计算其min{B[i]}的值并求和。
题目来源:江苏省常州高级中学 在此鸣谢
题解:
20分做法:见上文数学知识中的“等价于”部分。
30,70分做法:不同的DP。(DP蒟蒻表示并不会写这个部分分QAQ)
100分做法:
预备知识:
二项分布(苏教版数学选修2-3内容)。
$\because$对于矩阵中任意一行,情况均相同,记矩阵中某行元素之和为$B$。
由二项分布知,每一个元素为0的概率为$\frac{x}{x+y}$,为1的概率为$\frac{y}{x+y}$。
$\therefore P_{B=i}=C^{m}_{i}(\frac{x}{x+y})^{m-i}\cdot(\frac{y}{x+y})^{i}$
=$\frac{C^m_i \cdot x^{m-i} \cdot y^i}{(x+y)^m}$
在$min_B=i$的情况下,对于每一行的$B$,均有$B \geq i$,$\because \exists B=i$,也就是要除去每一行的$B$都大于$i$的情况。
$\therefore P_{(min_{B}=i)}=P^n_{B \geq i}-P^n_{B>i}$
$=P^n_{B \geq i}-P^n_{b \geq i+1}$。
$\therefore E=\sum_{i=0}^{m}i \cdot P_{min_{B}=i}$
$=\sum_{i=1}^{m}i \cdot P^n_{B \geq i}-i \cdot P^n_{b \geq i+1}$
$=P^n_{B \geq 1}-P^n_{B \geq 2}+2P^n_{B \geq 2}-2P^n_{B \geq 3}+ \cdots -m \cdot P^n_{B \geq m+1}$
$\because P_{B \geq m+1}=0$
$\exists E=\sum_{i=1}^{m}P^{n}_{B \geq i}$.
又$\because P_{B \geq i}=P_{B=i}+P_{B=i+1}+ \cdots +P_{B=m}$
$\therefore E=\sum_{i=1}^{m}(\sum_{j=i}^{m}P_{B=j})^{n}$
$=\sum_{i=1}^{m}(\sum_{j=i}^{m}\frac{C_{m}^{j} \cdot x^{m-j} \cdot y^j}{(x+y)^m})^n$
$\therefore ans=(x+y)^{m \cdot n}\cdot E=\sum_{i=i}^{m}(\sum_{j=i}^{m}C_{m}^j \cdot x^{m-j} \cdot y^j)^n$
$\because m,x,y$给定
$\therefore $记$C_{m}^{j}x^{m-j} \cdot y^{j}=A_{j},S_{j}=\sum_{i=1}^{j}A_i$
$\therefore ans=\sum_{i=1}^{m}(\sum_{j=i}^{m}C_{m}^j \cdot x^{m-j} \cdot y^j)^n$
$=\sum_{i=1}^{m}(S_{m}-S_{i-1})^n$
$O_{(n)}$预处理出$C_{m}^{i}$,随后计算$A_{i},S_{i}$,求和即可。
一道裸的数学题……
代码:
1 #include<bits/stdc++.h>
2 #define LL long long
3 #define f(m,j) c[j]*pow_mod(y,j)%MOD*pow_mod(x,m-j)%MOD
4 using namespace std;
5 const int maxn=2e5+10,MOD=1e9+7;
6 LL fac[maxn],infac[maxn],c[maxn];
7 LL a[maxn],s[maxn];
8 int n,m,x,y;LL ans=0;
9 LL pow_mod(LL a,int k)
10 {
11 LL ans=1;
12 for(;k;a=a*a%MOD,k>>=1){if(k&1){ans=ans*a%MOD;}}
13 return ans;
14 }
15 void init()
16 {
17 int i,j;
18 fac[0]=1;
19 for(i=1;i<=m;i++){fac[i]=fac[i-1]*i%MOD;}
20 for(i=0;i<=m;i++){infac[i]=pow_mod(fac[i],MOD-2);}
21 for(i=0;i<=m;i++){c[i]=fac[m]*infac[i]%MOD*infac[m-i]%MOD;}
22 }
23 int main()
24 {
25 int i,j;LL tmp;
26 cin>>n>>m>>x>>y;
27 init();
28 for(i=1;i<=m;i++){a[i]=f(m,i);s[i]=(s[i-1]+a[i])%MOD;}
29 for(i=1;i<=m;i++)
30 {
31 tmp=(s[m]-s[i-1]+MOD)%MOD;
32 ans=(ans+pow_mod(tmp,n))%MOD;
33 }
34 cout<<ans;
35 return 0;
36 }
Luogu T7468 I liked Matrix!的更多相关文章
- 组合数取模及Lucas定理
引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...
- luogu题解 UVA11992 【Fast Matrix Operations】
题目链接: https://www.luogu.org/problemnew/show/UVA11992 题目大意: 一个r*c的矩阵,一开始元素都是0,然后给你m次三种操作,分别是将一个子矩阵中所有 ...
- CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)
CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- Luogu T7152 细胞(递推,矩阵乘法,快速幂)
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...
- Luogu P4643 【模板】动态dp
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...
- Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)
题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...
随机推荐
- 离散傅里叶变换DFT入门
网上对于傅里叶变换相关的文章很多(足够多),有的是从物理相关角度入场,有的从数学分析角度入场.对于有志学习相关概念的同学还是能够很好的理解的. 数学包括三大块:代数学.几何.数学分析.前两块我们在中学 ...
- ICMP协议概述
• ICMP是三层协议,和IP.ARP.ICMP同属三层 • IP协议中的6是代表上层的TCP协议,17代表UDP协议,1代表同层的ICMP协议 • ICMP协议主要用来探测 ...
- VRay for SketchUp渲染图黑原因及解决方案
很多人都遇到用Vray for SketchUp云渲染的时候,渲染出来的图片是全黑或者是局部是黑色, 这是什么原因呢? 1.有一种情况是,SketchUp的文件储存机制和其他的软件有些不同,它是把模型 ...
- .NET 云原生架构师训练营(模块二 基础巩固 RabbitMQ Masstransit 异常处理)--学习笔记
2.6.8 RabbitMQ -- Masstransit 异常处理 异常处理 其他 高级功能 异常处理 异常与重试 重试配置 重试条件 重新投递信息 信箱 异常与重试 Exception publi ...
- Jenkins Android APP 持续集成体系建设二—自动部署、执行测试任务,关联打包任务
经过上一遍博客我们知道了怎么使用Jenkins自动打包,但打完包之后,我们还需要对新包进行回归测试,确定新包有没有问题,然后才能发布包,那么,话不多说,我们先来新建个自动化回归测试任务 新包自动化回归 ...
- zabbix_agent items not supported状态
不记得自己究竟更改了什么东西,然后突然发现所有的有关mysql的监控items都变成了not supported,怎么做不行,最后在web主页把主机删除,又重新添加一下,重新添加了一下模版就好了.这究 ...
- 【Spring】Spring中的Bean - 1、Baen配置
Bean配置 简单记录-Java EE企业级应用开发教程(Spring+Spring MVC+MyBatis)-Spring中的Bean 什么是Spring中的Bean? Spring可以被看作是一个 ...
- 【UML】Use Case Diagrams
文章目录 Use Case Diagrams Introduction Use case Diagram Use Case Diagrams - Actors Use Case Diagrams – ...
- xtrabackup 备份与恢复
书上摘抄 ---深入浅出mysql 448页 grant reload on *.* to 'backup'@'localhost' identified by '123456'; grant re ...
- 【VNC】vnc安装oracle的时候不显示图形化界面
背景: 在虚拟机搭建了一个环境,准备安装oracle.但是环境都配置完成后,执行./runInstaller的时候,没有界面显示,只显示下面的界面 多次尝试后,发现,还是这样,期初是因为没有配置DIS ...