有2种dfs的方法:

1.存下每个组的各个数和其质因数,每次对于新的一个数,与各组比对是否互质,再添加或不添加入该组。

2.不存质因数了,直接用gcd,更加快。P.S.然而我不知道为什么RE,若有好心人发现请教教我吧,谢谢~ :-)

下面附上方法1的AC代码——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<cmath>
5 #include<iostream>
6 using namespace std;
7
8 int n,ans=12;
9 int a[12];
10 struct node {int t;int p[3000];}
11 b[12];
12
13 int mmin(int x,int y)
14 { return x<y?x:y; }
15 int com(int id,int x)
16 {
17 for (int i=1;i<=b[id].t;i++)
18 if (x%b[id].p[i]==0) return 0;
19 return 1;
20 }
21 void dfs(int id,int h)
22 {
23 int x=a[id];
24 if (id>n) {ans=mmin(ans,h); return;}
25 for (int i=1;i<=h;i++)
26 if (com(i,x))
27 {
28 int y=x,tt=b[i].t;
29 for (int j=2;j<=y;j++)//sqrt(y) wrong
30 if (y%j==0) y/=j, b[i].p[++b[i].t]=j;
31 dfs(id+1,h);
32 b[i].t=tt;
33 }
34 int y=x;
35 b[h+1].t=0;
36 for (int j=2;j<=y;j++)
37 if (y%j==0) y/=j, b[h+1].p[++b[h+1].t]=j;
38 dfs(id+1,h+1);
39 }
40 int main()
41 {
42 scanf("%d",&n);
43 for (int i=1;i<=n;i++)
44 scanf("%d",&a[i]);
45 dfs(1,0);
46 printf("%d",ans);
47 return 0;
48 }

方法2的90分RE代码——

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 const int N=15;
8 int n,ans;
9 int a[N],b[N][N],t[N];
10
11 int mmin(int x,int y)
12 { return x<y?x:y; }
13 int gcd(int x,int y)
14 { return (!y)?x:gcd(y,x%y); }
15 bool addit(int x,int i)
16 {
17 for (int j=1;j<=t[i];j++)
18 if (gcd(x,b[i][j])!=1) return false;
19 return true;
20 }
21 void dfs(int x,int h)
22 {
23 if (x>n) {ans=mmin(h,ans);return;}
24 for (int i=1;i<=h;i++)
25 if (addit(a[x],i))
26 {
27 b[i][++t[i]]=a[x];
28 dfs(x+1,h);
29 t[i]--;
30 }
31 b[h+1][++t[h+1]]=a[x];
32 dfs(x+1,h+1);
33 }
34 int main()
35 {
36 scanf("%d",&n);
37 for (int i=1;i<=n;i++)
38 scanf("%d",&a[i]);
39 memset(t,0,sizeof(t));
40 ans=N;
41 dfs(1,0);
42 printf("%d\n",ans);
43 return 0;
44 }

其实noi上的数据还有个问题——1应该专门放在一组中,而该题数据没有考虑到这点......

【noi 2.5_7834】分成互质组(dfs)的更多相关文章

  1. openjudge7834:分成互质组 解析报告

    7834:分成互质组 总时间限制:  1000ms 内存限制:  65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...

  2. 若a与m互质,则a不影响m的完全剩余组

    [若a与m互质,则a不影响m的完全剩余组] 设t通过m的完全剩余组,若at不通过m的完全剩余组, 则会有at1=at2(mod m),即a(t1-t2)|m. 因为(a,m)=1,所以(t1-t2)| ...

  3. C互质个数

    C互质个数 Time Limit:1000MS  Memory Limit:65536K Total Submit:55 Accepted:27 Description 贝贝.妞妞和康康都长大了,如今 ...

  4. Hello Kiki(中国剩余定理——不互质的情况)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  5. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

  6. X问题(中国剩余定理+不互质版应用)hdu1573

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. hdu 5072 两两(不)互质个数逆向+容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 求n个不同的数(<=1e5)中有多少组三元组(a, b, c)两两不互质或者两两互质. 逆向求解,把 ...

  8. hdu 1573 X问题 两两可能不互质的中国剩余定理

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Desc ...

  9. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

随机推荐

  1. Flutter 布局类组件:层叠布局(Stack和Positioned)

    前言 层叠布局,即子组件可以根据距父容器四个角的位置来确定自身的位置.绝对定位运行子组件堆叠起来,即按照代码中声明的顺序. Flutter中使用Stack和Positioned这两个组件来配合实现绝对 ...

  2. Hadoop源码:namenode格式化和启动过程实现

    body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...

  3. for update语句锁机制问题

    数据库小知识学习系列 问题: MySQL InnoDB中,select where xxx=123 for update:该xxx没有索引,是使用表锁还是全部数据加行锁? 答: InnoDB引擎(默认 ...

  4. xtrabackup不完全恢复

    例如,在2014年6月26日下午14:00的时候有人误操作drop掉了一张表,由于库不是很大,并且为测试库,并没有访问,这个时候,我们可以进行基于位置和时间点的不完全恢复 先找到早上的备份,查看那xt ...

  5. 【Oracle】add_months()函数介绍

    add_months 函数主要是对日期函数进行操作,举例子进行说明 add_months 有两个参数,第一个参数是日期,第二个参数是对日期进行加减的数字(以月为单位的) 如:3个月以后的时间,可以用下 ...

  6. SDUST数据结构 - chap6 树与二叉树

    判断题: 选择题: 函数题: 6-1 求二叉树高度: 裁判测试程序样例: #include <stdio.h> #include <stdlib.h> typedef char ...

  7. [Usaco 2012 Feb]Nearby Cows

    题目描述 FJ发现他的牛经常跑到附近的草地去吃草,FJ准备给每个草地种足够的草供这个草地以及附近草地的奶牛来吃.FJ有N个草地(1<=N<=100000),有N-1条双向道路连接这些草地, ...

  8. 深度学习DeepLearning技术实战研修班

    深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电脑测试) 一.培训方式 ...

  9. HTML5与CSS3知识点总结

    好好学习,天天向上 本文已收录至我的Github仓库DayDayUP:github.com/RobodLee/DayDayUP,欢迎Star 原文链接:https://blog.csdn.net/we ...

  10. python系统监控及邮件发送

    python系统监控及邮件发送   #psutil模块是一个跨平台库,能轻松实现获取系统运行的进程和系统利用率   import psutil                              ...