J.U.C - AQS

java.util.concurrent(J.U.C)大大提高了并发性能,AQS 被认为是 J.U.C 的核心。它核心是利用volatile和一个维护队列。

AQS其实就是java.util.concurrent.locks.AbstractQueuedSynchronizer这个类。 阅读Java的并发包源码你会发现这个类是整个java.util.concurrent的核心之一,也可以说是阅读整个并发包源码的一个突破口。

比如读ReentrantLock的源码你会发现其核心是它的一个内部类Sync:

整个包中很多类的结构都是如此,比如Semaphore,CountDownLatch都有一个内部类Sync,而所有的Sync都是继承自AbstractQueuedSynchronizer。 所以说想要读懂Java并发包的代码,首先得读懂这个类。

AQS简核心是通过一个共享变量来同步状态,变量的状态由子类去维护,而AQS框架做的是:

  • 线程阻塞队列的维护
  • 线程阻塞和唤醒

CountdownLatch

用来控制一个线程等待多个线程。

维护了一个计数器 cnt,每次调用 countDown() 方法会让计数器的值减 1,减到 0 的时候,那些因为调用 await() 方法而在等待的线程就会被唤醒。

public class CountdownLatchExample {

    public static void main(String[] args) throws InterruptedException {
final int totalThread = 10;
CountDownLatch countDownLatch = new CountDownLatch(totalThread);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalThread; i++) {
executorService.execute(() -> {
System.out.print("run..");
countDownLatch.countDown();
});
}
countDownLatch.await();
System.out.println("end");
executorService.shutdown();
}
}
run..run..run..run..run..run..run..run..run..run..end

CyclicBarrier

用来控制多个线程互相等待,只有当多个线程都到达时,这些线程才会继续执行。

和 CountdownLatch 相似,都是通过维护计数器来实现的。但是它的计数器是递增的,每次执行 await() 方法之后,计数器会加 1,直到计数器的值和设置的值相等,等待的所有线程才会继续执行。和 CountdownLatch 的另一个区别是,CyclicBarrier 的计数器可以循环使用,所以它才叫做循环屏障。

下图应该从下往上看才正确。

public class CyclicBarrierExample {
public static void main(String[] args) throws InterruptedException {
final int totalThread = 10;
CyclicBarrier cyclicBarrier = new CyclicBarrier(totalThread);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalThread; i++) {
executorService.execute(() -> {
System.out.print("before..");
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.print("after..");
});
}
executorService.shutdown();
}
}
before..before..before..before..before..before..before..before..before..before..after..after..after..after..after..after..after..after..after..after..

Semaphore

Semaphore 就是操作系统中的信号量,可以控制对互斥资源的访问线程数。

以下代码模拟了对某个服务的并发请求,每次只能有 3 个客户端同时访问,请求总数为 10。

public class SemaphoreExample {
public static void main(String[] args) {
final int clientCount = 3;
final int totalRequestCount = 10;
Semaphore semaphore = new Semaphore(clientCount);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalRequestCount; i++) {
executorService.execute(()->{
try {
semaphore.acquire();
System.out.print(semaphore.availablePermits() + " ");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
});
}
executorService.shutdown();
}
}
2 1 2 2 2 2 2 1 2 2

J.U.C - 除了基于AQS的其它组件(FutureTask和ForkJoin)

FutureTask

在介绍 Callable 时我们知道它可以有返回值,返回值通过 Future 进行封装。FutureTask 实现了 RunnableFuture 接口,该接口继承自 Runnable 和 Future 接口,这使得 FutureTask 既可以当做一个任务执行,也可以有返回值。

public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>

FutureTask 可用于异步获取执行结果或取消执行任务的场景。当一个计算任务需要执行很长时间,那么就可以用 FutureTask 来封装这个任务,主线程在完成自己的任务之后再去获取结果。

public class FutureTaskExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<Integer> futureTask = new FutureTask<Integer>(new Callable<Integer>() {
@Override
public Integer call() throws Exception {
int result = 0;
for (int i = 0; i < 100; i++) {
Thread.sleep(10);
result += i;
}
return result;
}
}); Thread computeThread = new Thread(futureTask);
computeThread.start(); Thread otherThread = new Thread(() -> {
System.out.println("other task is running...");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
otherThread.start();
System.out.println(futureTask.get());
}
}
other task is running...
4950

BlockingQueue

java.util.concurrent.BlockingQueue 接口有以下阻塞队列的实现:

  • FIFO 队列 :LinkedBlockingQueue、ArrayBlockingQueue(固定长度)
  • 优先级队列 :PriorityBlockingQueue

提供了阻塞的 take() 和 put() 方法:如果队列为空 take() 将阻塞,直到队列中有内容;如果队列为满 put() 将阻塞,直到队列有空闲位置。

使用 BlockingQueue 实现生产者消费者问题

public class ProducerConsumer {

    private static BlockingQueue<String> queue = new ArrayBlockingQueue<>(5);

    private static class Producer extends Thread {
@Override
public void run() {
try {
queue.put("product");
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("produce..");
}
} private static class Consumer extends Thread { @Override
public void run() {
try {
String product = queue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("consume..");
}
}
}
public static void main(String[] args) {
for (int i = 0; i < 2; i++) {
Producer producer = new Producer();
producer.start();
}
for (int i = 0; i < 5; i++) {
Consumer consumer = new Consumer();
consumer.start();
}
for (int i = 0; i < 3; i++) {
Producer producer = new Producer();
producer.start();
}
}
produce..produce..consume..consume..produce..consume..produce..consume..produce..consume..

ForkJoin

主要用于并行计算中,和 MapReduce 原理类似,都是把大的计算任务拆分成多个小任务并行计算。

public class ForkJoinExample extends RecursiveTask<Integer> {
private final int threhold = 5;
private int first;
private int last; public ForkJoinExample(int first, int last) {
this.first = first;
this.last = last;
} @Override
protected Integer compute() {
int result = 0;
if (last - first <= threhold) {
// 任务足够小则直接计算
for (int i = first; i <= last; i++) {
result += i;
}
} else {
// 拆分成小任务
int middle = first + (last - first) / 2;
ForkJoinExample leftTask = new ForkJoinExample(first, middle);
ForkJoinExample rightTask = new ForkJoinExample(middle + 1, last);
leftTask.fork();
rightTask.fork();
result = leftTask.join() + rightTask.join();
}
return result;
}
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
ForkJoinExample example = new ForkJoinExample(1, 10000);
ForkJoinPool forkJoinPool = new ForkJoinPool();
Future result = forkJoinPool.submit(example);
System.out.println(result.get());
}

ForkJoin 使用 ForkJoinPool 来启动,它是一个特殊的线程池,线程数量取决于 CPU 核数。

public class ForkJoinPool extends AbstractExecutorService

ForkJoinPool 实现了工作窃取算法来提高 CPU 的利用率。每个线程都维护了一个双端队列,用来存储需要执行的任务。工作窃取算法允许空闲的线程从其它线程的双端队列中窃取一个任务来执行。窃取的任务必须是最晚的任务,避免和队列所属线程发生竞争。例如下图中,Thread2 从 Thread1 的队列中拿出最晚的 Task1 任务,Thread1 会拿出 Task2 来执行,这样就避免发生竞争。但是如果队列中只有一个任务时还是会发生竞争。

J.U.C - 写在最后

自古深情留不住,总是套路得人心。学习就是不断钻研,不断突破,最后总结初自己得思维模式(套路),作为知识工作者,形成一个体系结构是多么重要,像AQS体系就是完完全全一个套路啊!

并发编程实战-J.U.C核心包的更多相关文章

  1. 【Java并发编程实战】-----“J.U.C”:Exchanger

    前面介绍了三个同步辅助类:CyclicBarrier.Barrier.Phaser,这篇博客介绍最后一个:Exchanger.JDK API是这样介绍的:可以在对中对元素进行配对和交换的线程的同步点. ...

  2. 【Java并发编程实战】-----“J.U.C”:CountDownlatch

    上篇博文([Java并发编程实战]-----"J.U.C":CyclicBarrier)LZ介绍了CyclicBarrier.CyclicBarrier所描述的是"允许一 ...

  3. 【Java并发编程实战】-----“J.U.C”:CyclicBarrier

    在上篇博客([Java并发编程实战]-----"J.U.C":Semaphore)中,LZ介绍了Semaphore,下面LZ介绍CyclicBarrier.在JDK API中是这么 ...

  4. 【Java并发编程实战】-----“J.U.C”:ReentrantReadWriteLock

    ReentrantLock实现了标准的互斥操作,也就是说在某一时刻只有有一个线程持有锁.ReentrantLock采用这种独占的保守锁直接,在一定程度上减低了吞吐量.在这种情况下任何的"读/ ...

  5. 【Java并发编程实战】-----“J.U.C”:Semaphore

    信号量Semaphore是一个控制访问多个共享资源的计数器,它本质上是一个"共享锁". Java并发提供了两种加锁模式:共享锁和独占锁.前面LZ介绍的ReentrantLock就是 ...

  6. 【Java并发编程实战】-----“J.U.C”:ReentrantLock之三unlock方法分析

    前篇博客LZ已经分析了ReentrantLock的lock()实现过程,我们了解到lock实现机制有公平锁和非公平锁,两者的主要区别在于公平锁要按照CLH队列等待获取锁,而非公平锁无视CLH队列直接获 ...

  7. 【Java并发编程实战】-----“J.U.C”:ReentrantLock之一简介

    注:由于要介绍ReentrantLock的东西太多了,免得各位客官看累,所以分三篇博客来阐述.本篇博客介绍ReentrantLock基本内容,后两篇博客从源码级别分别阐述ReentrantLock的l ...

  8. 【Java并发编程实战】-----“J.U.C”:锁,lock

    在java中有两种方法实现锁机制,一种是在前一篇博客中([java7并发编程实战]-----线程同步机制:synchronized)介绍的synchronized,而另一种是比synchronized ...

  9. 【Java并发编程实战】----- AQS(四):CLH同步队列

    在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...

随机推荐

  1. xshell断线解决办法

    困扰了好几个月了,网上更改ssh配置文件.固定ip都不好使,终于找到xshell掉线的解决办法了 哈哈!!! 设备管理器-->网络适配器-->对应网络连接虚拟机方式,本机虚拟机桥接如图 右 ...

  2. R-C3D:用于时间活动检测的区域3D网络

    论文原称:R-C3D: Region Convolutional 3D Network for Temporal Activity Detection(2017) 主要贡献: 1.提出一个包括活动候选 ...

  3. C# 8: 可变结构体中的只读实例成员

    在之前的文章中我们介绍了 C# 中的 只读结构体(readonly struct)[1] 和与其紧密相关的 in 参数[2]. 今天我们来讨论一下从 C# 8 开始引入的一个特性:可变结构体中的只读实 ...

  4. Layui弹出层详解

    今天空了学习一下弹出层 还是一步步展示把 首先,layer可以独立使用,也可以通过Layui模块化使用.我个人一直是用的模块化的 所以下面素有的都是基于模块化的. 引入好相关文件就可以开始啦  今天放 ...

  5. Pandas_数据读取与存储数据(精炼)

    # 一,读取 CSV 文件: # 文字解析函数: # pd.read_csv() 从文件中加载带分隔符的数据,默认分隔符为逗号 # pd.read_table() 从文件中加载带分隔符的数据,默认分隔 ...

  6. C++如何实现多态

    1.   什么是多态多态是C++中的一个重要的基础,面向对象编程语言中,接口的多种不同的实现方式即为多态.2.   多态带来的好处多态带来两个明显的好处:一是不用记大量的函数名了,二是它会依据调用时的 ...

  7. mysql8.0参考手册学习

    mysql8.0参考手册链接:https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-join-ord ...

  8. Spring源码理论

    Spring Bean的创建过程: Spring容器获取Bean和创建Bean都会调用getBean()方法. getBean()方法 1)getBean()方法内部最终调用doGetBean()方法 ...

  9. Docker学习第一天(Docker入门&&Docker镜像管理)

    简介 今天小区的超市买零食老板给我说再过几天可能就卖完了我有点诧异,老板又说厂家不生产了emmm 今天总算开始docker了! 1.Docker? 1.什么是Docker Docker 是一个开源的应 ...

  10. Pinpoint 设置微信或者钉钉预警

    本文基于 Pinpoint 2.1.0 版本 本文大部分内容来自:侠梦的开发笔记 ,但是原文的版本和我的不一致,放在2.1.0是跑不起来的,但是大概逻辑和思路基本一致. 目录 一.接入预警大概思路 二 ...