UOJ小清新题表

题目摘要

UOJ链接

给出一个排列 \(A\) 以及它的一个非空子序列 \(B\),给出一个 \(x\) 并进行若干次操作,每一次操作需要在 \(A\) 中选择一个长度恰好为 \(x\) 的区间并删除它的最小值。如果在操作结束以后剩下的数组恰好是 \(B\),那么就可以得到 \(x\) 分,否则得到 \(0\) 分。

有 \(q\) 组询问,所有的 \(A\) 序列都是一样的,但 \(B\) 序列不同。求每次询问能得到的最大得分。

\(B\) 序列是一个 01 串,若该位置上为 \(1\) ,则表示 \(A\) 序列中该位置的数在 \(B\) 序列中出现了。

数据范围

\(2≤n≤1000000\),\(1≤q≤10\),\(A\) 为一个排列,\(B\) 为 \(A\) 的非空子序列,且 \(B≠A\)。

思路

可以先看看样例和解释。

我们可以枚举每一个可能要被删除的点。若其要被删除,向左扩展到第一个比他小的点 \(l\),向右扩展到地一个比他小的 \(r\),那么这两个点构成的开区间 \((l,r)\) 就是这个点要被删除时的极大区间。由于要保证必须满足条件,所以要在所有的极大区间中取最小,即为所要求的 \(x\)。

维护区间大小或者联通性之类的这种东西,很容易可以想到并查集。可以对下标开两个并查集,分别向左向右扩展。

比如要找到左边第一个比当前点小的点,需要把数从大到小加入,用并查集维护不用删除的点,也就是 \(B\) 序列中的每个 \(1\), 如果遇到 \(1\) ,则 \(fa[i]=i\) ,否则 \(fa[i]=\text{Find}(\ i-1\ )\) 。显然最后查询的时候需要跳过 \(1\) 。向右扩展同理。这样你每次都能找到极大区间,只需要取个 \(\min\) 即可。

一开始用前缀和维护一下 \(1\) 的个数,此点对应的极大区间就是扩展后的区间中 \(1\) 的个数加上自己(\(+1\))。

代码

建议改成:三目运算符带师

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
const int INF=0x3f3f3f3f;
int n,ans;
int a[maxn],pos[maxn],L[maxn],R[maxn],sum[maxn];
char s[maxn]; inline int read(){
int x=0,fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=-1;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return x*fopt;
} int Find(int x,int fa[]){
return x==fa[x]?x:(fa[x]=Find(fa[x],fa));
} inline void Solve(){
for(int i=1;i<=n;i++)
sum[i]=(s[i]=='1')?sum[i-1]+1:sum[i-1];
ans=INF;R[n+1]=n+1;
for(int i=1;i<=n;i++)
L[i]=(s[i]=='1')?i:Find(i-1,L);
for(int i=n;i>=1;i--)
R[i]=(s[i]=='1')?i:Find(i+1,R);
for(int i=n;i>=1;i--){
int v=pos[i];
if(s[v]=='1'){
L[v]=Find(v-1,L);
R[v]=Find(v+1,R);
}else ans=min(ans,sum[Find(v,R)-1]-sum[Find(v,L)]+1);//注意是开区间
}
} int main(){
n=read();
for(int i=1;i<=n;i++){
a[i]=read();
pos[a[i]]=i;
}
int Q=read();
while(Q--){
scanf("%s",s+1);
Solve();
printf("%d\n",ans);
}
return 0;
}

【UR #13】Yist的更多相关文章

  1. uoj#186 【UR #13】Yist

    题目 orz myy 首先注意到答案有单调性,于是我们可以考虑二分一个\(x\),之后去判断一下每次只使用长度为\(x\)的区间能否删出目标序列 显然我们应该贪心地删除需要删除元素中最小的那一个,感性 ...

  2. uoj#188. 【UR #13】Sanrd(Min_25筛)

    题面 传送门 题解 这是一道语文题 不难看出,题目所求即为\(l\)到\(r\)中每个数的次大质因子 我们考虑\(Min\_25\)筛的过程,设 \[S(n,j)=\sum_{i=1}^nsec_p( ...

  3. uoj#187. 【UR #13】Ernd

    http://uoj.ac/problem/187 每个点只能从时间,b+a,b-a三维都不大于它的点转移过来,将点按时间分成尽量少的一些段,每段内三维同时非严格单调,每段内的点可能因为连续选一段而产 ...

  4. UOJ 188 【UR #13】Sanrd——min_25筛

    题目:http://uoj.ac/problem/188 令 \( s(n,j)=\sum\limits_{i=1}^{n}[min_i>=p_j]f(j) \) ,其中 \( min_i \) ...

  5. UOJ #188. 【UR #13】Sanrd

    Description 给定 \(\sum_{i=l}^r f[i]\) \(f[i]=\) 把 \(i\) 的每一个质因子都从小到大排列成一个序列(\(p_i^{c_i}\)要出现 \(c_i\) ...

  6. UOJ188. 【UR #13】Sanrd

    传送门 Sol 设 \(f_i\) 表示 \(i\) 的次大质因子 题目就是要求 \[\sum_{i=l}^{r}f_i\] 考虑求 \(\sum_{i=1}^{n}f_i\) 所求的东西和质因子有关 ...

  7. 「uoj#188. 【UR #13】Sanrd」

    题目 不是很能看懂题意,其实就是求\([l,r]\)区间内所有数的次大质因子的和 这可真是看起来有点鬼畜啊 这显然不是一个积性函数啊,不要考虑什么特殊的函数了 我们考虑Min_25筛的过程 设\(S( ...

  8. UOJ188. 【UR #13】Sanrd [min_25筛]

    传送门 思路 也可以算是一个板题了吧qwq 考虑min_25筛最后递归(也就是DP)的过程,要枚举当前最小的质因子是多少. 那么可以分类讨论,考虑现在这个质因子是否就是次大质因子. 如果不是,那么就是 ...

  9. 【UOJ#75】【UR #6】智商锁(矩阵树定理,随机)

    [UOJ#75][UR #6]智商锁(矩阵树定理,随机) 题面 UOJ 题解 这种题我哪里做得来啊[惊恐],,, 题解做法:随机\(1000\)个点数为\(12\)的无向图,矩阵树定理算出它的生成树个 ...

随机推荐

  1. 3.AVPacket使用

    1.使用注意 AVPacket需要用户通过av_packet_allc()创建好空间后.才能供给fimpeg进行获取解码前帧数据,由于解码前帧数据大小是不固定的(比如I帧数据量最大)所以ffmpeg会 ...

  2. SpringMVC-09-Ajax技术

    9. Ajax技术 简介 AJAX=Asynchronous JavaScript and XML (异步的JavaScript和XML) AJAX是一种在无需重新加载整个网页的情况下,能够更新部分网 ...

  3. selenuim中18种定位方式

    18种定位方式=8种单数形式+8种复数形式+2种底层方案 单数可以确定唯一,复数无法确定: 单数形式定位,返回的是一个元素,复数形式,返回的是一个列表,返回的是当前页面所有符合要求的元素,没有意义 一 ...

  4. python3 变量

    python 3变量名不能以数字开头但能数字结尾 变量名大小写敏感 在多个单词组成的变量名中以下划线间隔

  5. Git | Git入门,成为项目管理大师(一)

    大家好,周一我们迎来了一个新的专题--git. 写这个专题的初衷有两点,第一点是觉得好像很少有公众号提到git相关的技术,可能是觉得太基础了看不上.但实际上git非常重要,在我们实际的开发工作当中使用 ...

  6. JVM关于GC的日志分析

    通过阅读GC日志,我们可以了解Java虛拟机内存分配与回收策略.内存分配与垃圾回收的参数列表 一XX: +PrintGC 输出Gc日志.类似: 一verbose:gc 一XX: +PrintGCDet ...

  7. Docker实战(6): 导出docker镜像离线包

    前言 离线环境安装Docker 镜像,我已知两种情况,以下操作我将采用在可访问外网的机器上通过镜像迁移的方式来给离线环境安装. 环境:服务器node1可访问外网.服务器node2无法访问外网 两台机器 ...

  8. threading之线程的开始,暂停和退出

    目录 背景 实现代码 背景 利用多线程实现一个开关功能,需要对产生的线程进行管理(例如:开启,暂停,关闭等操作). 实现代码 任务脚本: #!/usr/bin/python3 # _*_ coding ...

  9. linux与linux间,互相拷贝文件

    直接使用scp命令 和远程Linux主机 进行文件的拷贝    1.可以将远程Linux系统上的文件拷贝到本地计算机    2.也可以将本地计算机上的文件拷贝到远程Linux系统上. 比如:我们要拷贝 ...

  10. spring注解(Component、依赖注入、生命周期、作用域)

    1.注解 注解就是一个类,使用@加上注解名称,开发中可以使用注解取代配置文件 2.@Component 取代<bean  class="">,@Component 取代 ...