Pytorch slp singleLayerPerceptron 单层感知机
单层感知机
& y = XW + b \\
& y = \sum x_i*w_i+b\\
\end{aligned}
\]
Derivative
&E=\frac{1}{2}(O^1_0-t)^2\\
&\frac{\delta E}{\delta W_{j0}}=(O_0-t)\frac{\delta O_0}{\delta w_{j0}}\\
&=(O_0-t)\frac{\delta O_0}{\delta w_{j0}}\\
&=(O_0-t)\delta(x_0)(1-\delta(x_0))\frac{\delta x_0^1}{\delta w_j^0}\\
&=(O_0-t)O_0(1-O_0)\frac{\delta x_0^1}{\delta w_j^0}\\
&=(O_0-t)O_0(1-O_0)x_j^0
\end{aligned}
\]
import torch,torch.nn.functional as F
x = torch.randn(1, 10)
w = torch.randn(1, 10, requires_grad=True)
o = torch.sigmoid(x@w.t())
o.shape
torch.Size([1, 1])
loss = F.mse_loss(torch.ones(1, 1), o)
loss.shape
torch.Size([])
loss.backward()
w.grad
tensor([[-0.1801, 0.1923, 0.2480, -0.0919, 0.1487, 0.0196, -0.1588, -0.1652,
0.3811, -0.2290]])
Multi-output Perceptron
Derivative
&E=\frac{1}{2}(O^1_i-t)^2\\
&\frac{\delta E}{\delta W_{jk}}=(O_k-t_k)\frac{\delta O_k}{\delta w_{jk}}\\
&=(O_k-t)\frac{\delta O_0}{\delta w_{j0}}\\
&=(O_k-t)\delta(x_0)(1-\delta(x_0))\frac{\delta x_0^1}{\delta w_j^0}\\
&=(O_k-t)O_0(1-O_0)\frac{\delta x_0^1}{\delta w_j^0}\\
&=(O_k-t)O_0(1-O_0)x_j^0
\end{aligned}
\]
Pytorch slp singleLayerPerceptron 单层感知机的更多相关文章
- pytorch——预测值转换为概率,单层感知机
softmax函数,可以将算出来的预测值转换成0-1之间的概率形式 导数的形式 import torch import torch.nn.functional as F x=torch.tensor( ...
- 单层感知机_线性神经网络_BP神经网络
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as ...
- TensorFlow从0到1之TensorFlow实现单层感知机(20)
简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...
- TensorFlow单层感知机实现
TensorFlow单层感知机实现 简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,只能解决线性可分的问题.虽然限制了单层感知机只能应用于线性可分 ...
- 非学习型单层感知机的java实现(日志三)
要求如下: 所以当神经元输出函数选择在硬极函数的时候,如果想分成上面的四个类型,则必须要2个神经元,其实至于所有的分类问题,n个神经元则可以分成2的n次方类型. 又前一节所证明出来的关系有: 从而算出 ...
- Matlab实现单层感知机网络识别字母
感知机网络的参数设置 % 具体用法: % net=newp(pr,T,TF,LF); % % pr: pr是一个R×2的矩阵,R为感知器中输入向量的维度(本例中使用35个字符表征一个字母,那么其维度为 ...
- 小白学习之pytorch框架(5)-多层感知机(MLP)-(tensor、variable、计算图、ReLU()、sigmoid()、tanh())
先记录一下一开始学习torch时未曾记录(也未好好弄懂哈)导致又忘记了的tensor.variable.计算图 计算图 计算图直白的来说,就是数学公式(也叫模型)用图表示,这个图即计算图.借用 htt ...
- 深度学习:多层感知机和异或问题(Pytorch实现)
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...
- deep learning入门:感知机
权重和偏置 import numpy as np # 求x1 and x2 def AND(x1, x2): x = np.array([x1, x2]) w = np.array([0.5, 0.5 ...
- (数据科学学习手札34)多层感知机原理详解&Python与R实现
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系 ...
随机推荐
- VS Code:4个中文乱码问题及解决方法-转载
https://www.jianshu.com/p/6a2c21cc07bb 1. 背景 凡是编程软件,特别是国外的软件,都有或多或少的中文乱码问题(毕竟程序都是用英文写的).现提出VS Co ...
- 嵌入式开发er的C语言能力自测(面试)题---top 16
准备面试刷到的,链接里是原文和答案: (a-c-test-the-0x10-best-questions-for-would-be-embedded-programmers) 这里我先只给出问题,可以 ...
- Vulnhub 靶场 HMS?: 1
Vulnhub 靶场 HMS?: 1 前期准备: 靶机地址:https://www.vulnhub.com/entry/hms-1,728/ 攻击机ip:192.168.147.190 靶机ip:19 ...
- COM 对象的利用与挖掘4
作者:Joey@天玄安全实验室 前言 本文在FireEye的研究Hunting COM Objects[1]的基础上,讲述COM对象在IE漏洞.shellcode和Office宏中的利用方式以及如何挖 ...
- .net ef 链接 mysql
https://blog.csdn.net/weixin_30394975/article/details/114168133
- maven profile 的作用
maven 的profile 可以是我们通过编译时指定 -P 来实现 使用不同的 属性变量. 比如: <profiles> <profile> <id>local ...
- class声明中初始化静态成员变量的问题
1. const静态变量,允许整型或枚举类型成员直接初始化. 2. constexpr静态变量,允许literal类型成员直接初始化. 3. c++17引入inline变量,允许其他类型成员直接初始化 ...
- python 识别登陆验证码图片(完整代码)
在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记. 首选导入一些用到的库,re.Imag ...
- C++实现线性表-顺序表的合并操作代码
#include<iostream>#include<cstdlib>//C++动态分配存储空间using namespace std;#define OK 1#define ...
- CSOL大灾变移植记录
在2019年,我玩u3d把玩了一段时间,并制作了一些Demo,其中包括FPSDemo,RPG动作游戏Demo,一些截图如下: 时间到了2020年5月底,我开始玩之前大学研究过的jMonkeyEngin ...