这道题是我做CodeTon Round1时的D题,总的来看思路很重要,有几个比较明显的切入问题的角度,要选择到最优的那个;

先看题目:

我们可以发现,这道题的描述一目了然,就是说我们能不能找k个数的和正好等于我们输入的n;

但是有对于这k个数的限制:

·k>=2

`k[i]%k 不相同

所以我们粗略的想想就可以想到,既然这k个数的关于k的余数都不相同,且为k个正数,所以我们就可以这么想这k个数是在1,2,3……,k的基础上进行的修改(+k || +2k || +3k……),所以我们就可以得到这样一个一定正确的式子:

我们先令dp[i]为i的高斯求和,k是我们最后的ans:

if ( (n - dp[k]) % k == 0 ) ans = k;

解释一下:因为n能和这个高斯和的差能被k整除得到x,说明我只要对于1~k中的任意x个数加上一个k或者对一个数加上xk都能得到这k个数;

单看这个分析是正确的,但是这道题不能这样去做是因为n的数据范围太大了!!!如果我要得到这么dp[k]去match 10^18这个数量级的话,根据高斯求和,我起码要开10^9这么大的数组,而且还得从前往后遍历,这很明显是不正确的;

所以我们对于一个数据很大的问题我们肯定是能找到某种规律是他们普遍适用的,或者说我们能逐渐将数据缩小到一个我们可以接受的范围,而且这个缩小数据的过程也一定不能是一个一个往下缩,一般采取log级别的缩减;这是解决这种问题的总体思路;

所以我会自然而然地想到我们分成奇数和偶数,然后就可以发现,当n为奇数时,一定可以取k = 2,因为3k + 2是k取2时所能涵盖的所有数,即除了1之外的奇数;那么奇数问题解决了,我们就会去想解决偶数问题 , 但是我很难对这些偶数进行分类,只能根据样例1猜测是不是所有的2的指数幂的数都只能输出-1;

虽然上面的两个思路都没有完整的求解出我们所要的答案,但是他对于找出正确答案是有借鉴作用的,我们先去看到之前我们得出的那个充分必要条件,并将其中的dp用高斯求和展开可得 ( n - (1+k)*k/2 ) 是k的整数倍即可,然后我们可以根据数学轻松得出n和(1+k)*k/2 是k的整数倍就行了呗,由后面那个式子可以得出k只有为奇数时,后面那个才能是k的整数倍;

然后我们再将目光聚焦到前面的n上,当n为奇数时不用想肯定是可以取2的(前面的借鉴作用),所以当n为偶数时,如果他能被k整除,就是对的,说明n不能是2的指数幂,再次证明了我们刚刚的猜想是正确的;所以我们做以下操作:

当n能被2整除时,就除以2直到n变成奇数,也就是我们这里要的k就行了;

但是问题真正解决了吗? 如果当前的dp[k] > n本身呢?说明我们k取大了对吧,然后我们刚刚的操作相当于把n拆成了奇数k和2的指数幂x,那我们就想取x,又会发现后半部分除以x后变成(1+x)/ 2,因为x为偶数,所以这样是不行的,所以我们就想这个2这么碍眼,如果我干脆取2x,会得到(k - 1 - 2x ) / 2,我们要证明这个能整除且为非负数,因为k为奇数,1+2x为奇数,所以奇数减奇数肯定是偶数,所以一定成立,但是k一定要大于等于2x+1,就一定满足题干,所以我们发现2x  < k时,dp[k] > n ,2x >k时,dp[k]一定刚好满足条件;

所以对于k>1时,我们就取最后的ans = min(k,2x);

总结:这道题很多主要是数学思想上的,很多地方需要用到猜想的方法,然后对于应付大数据的数我们就要这样类似的处理,然后我们可能一开始得不出正确答案,但是通过调整之后一定能够得出我们所要的ans;

代码:

#include<bits/stdc++.h>

using namespace std;
typedef long long LL;

int main()
{
int t;
cin >> t;
while(t--){
LL n;
cin >> n;
LL k = 1;
while(n%2 == 0){
n/=2;
k*=2;
}
if(n == 1) cout << -1 <<'\n';
else cout << min(n,2*k) << '\n';
}
return 0;
}

K-good number Theory + 数学问题的更多相关文章

  1. 2016级算法第二次上机-F.ModricWang's Number Theory II

    891 ModricWang's Number Theory II 思路 使得序列的最大公约数不为1,就是大于等于2,就是找到一个大于等于2的数,它能够整除序列中的所有数. 考虑使得一个数d整除数组中 ...

  2. Number Theory Problem(The 2016 ACM-ICPC Asia China-Final Contest 找规律)

    题目: Mr. Panda is one of the top specialists on number theory all over the world. Now Mr. Panda is in ...

  3. 【BZOJ4026】dC Loves Number Theory 分解质因数+主席树

    [BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给 ...

  4. BZOJ_4026_dC Loves Number Theory _主席树+欧拉函数

    BZOJ_4026_dC Loves Number Theory _主席树+欧拉函数 Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭 ...

  5. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

  6. 题解-Ehab's REAL Number Theory Problem

    Ehab's REAL Number Theory Problem 前置知识 质数 分解质因数 无向无权图最小环<讲> Ehab's REAL Number Theory Problem/ ...

  7. 计蒜客 31452 - Supreme Number - [简单数学][2018ICPC沈阳网络预赛K题]

    题目链接:https://nanti.jisuanke.com/t/31452 A prime number (or a prime) is a natural number greater than ...

  8. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

  9. HDU 1018-Big Number(数学)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

随机推荐

  1. v80.01 鸿蒙内核源码分析(内核态锁篇) | 如何实现快锁Futex(下) | 百篇博客分析OpenHarmony源码

    百篇博客分析|本篇为:(内核态锁篇) | 如何实现快锁Futex(下) 进程通讯相关篇为: v26.08 鸿蒙内核源码分析(自旋锁) | 当立贞节牌坊的好同志 v27.05 鸿蒙内核源码分析(互斥锁) ...

  2. MySQL基本数据类型与约束条件

    昨日内容回顾 数据存储的演变 # 方向: 朝着更加统一和方便管理 数据库的发展史 # 由本地保存逐步演变为线上保存 数据库的本质 # 本质上就是一款CS架构的软件 """ ...

  3. .NET官方封装的Win32API类库

    大部分朋友在使用C#.NET调用Win32API时都不清楚API函数的声明,要么就是抄网上的代码,但是总会遇到各种各样奇奇怪怪难以解决的问题,打算自己封装又发现工作量实在太大. 其实完全没有必要自己动 ...

  4. Spring AOP应用之一:声明式事务

    所有数据访问技术都提供事务处理机制,这些技术提供了API用来开启事务.提交事务完成数据操作,或者在发生错误的时候回滚数据.Spring本身并不支持事务实现,同时只是负责提供标准接口来处理不同数据访问技 ...

  5. JavaScript ==原理与分析

    JavaScript原始类型 ECMAScript 有 5 种原始类型(primitive type),即 Undefined.Null.Boolean.Number 和 String. typeof ...

  6. Docker 镜像 层结构理解

    镜像到底是什么.镜像的层结构又是什么 通过docker history命令进行分析,镜像是一种其他镜像+文件+命令的组合. 这些镜像的加载.文件导入创建.命令是存在顺序关系的,所以也引出了层的概念. ...

  7. 什么是jQuery?

    目录 一:jQuery 1.jQuery介绍 2.jQuery的宗旨 3.有了jQuery那我们还使用BOM与DOM吗? 4.jQuery的优势 5.python与jQuery导入(复习) 6.jQu ...

  8. 为什么用Python,高级的Python是一种高级编程语言

    Python特性 如果有人问我Python最大的特点是什么,我会毫不犹豫地告诉他:它简单易学,功能强大.作为一个纯自由软件,Python有许多优点: 很简单.基于"优雅".&quo ...

  9. 详解 c# 克隆

    克隆方法是原型设计模式中必须使用的方式,它将返回一个与当前对象数据一致的对象.正如其名,犹如一个模子雕刻而出.克隆类型分为两种:浅克隆.深克隆. 浅复制就是仅复制类中的值类型成员 深复制就是复制类中的 ...

  10. $_SERVER["QUERY_STRING"],$_SERVER["REQUEST_URI"],$_SERVER["SCRIPT_NAME"] 和$_SERVER["PHP_SELF"]

    $_SERVER["QUERY_STRING"],$_SERVER["REQUEST_URI"],$_SERVER["SCRIPT_NAME" ...