import numpy as np

inf = 99999  # 不连通值
mtx_graph = [[0, 1, inf, 3, inf, inf, inf, inf, inf],
[1, 0, 5, inf, 2, inf, inf, inf, inf],
[inf, inf, 0, 1, inf, 6, inf, inf, inf],
[inf, inf, inf, 0, inf, 7, inf, 9, inf],
[inf, 2, 3, inf, 0, 4, 2, inf, 8],
[inf, inf, 6, 7, inf, 0, inf, 2, inf],
[inf, inf, inf, inf, inf, 1, 0, inf, 3],
[inf, inf, inf, inf, inf, inf, 1, 0, 2],
[inf, inf, inf, inf, 8, inf, inf, 2, 0]] def Floyd(graph):
N = len(graph)
A = np.array(graph)
path = np.zeros((N, N))
for i in range(0, N):
for j in range(0, N):
if A[i][j] != inf:
path[i][j] = j
for k in range(0, N):
for i in range(0, N):
for j in range(0, N):
if A[i][k] + A[k][j] < A[i][j]:
A[i][j] = A[i][k] + A[k][j]
path[i][j] = path[i][k]
for i in range(0, N):
for j in range(0, N):
path[i][j] = path[i][j] + 1
print('距离 = ')
print(A)
print('路径 = ')
print(path) Floyd(mtx_graph)

距离 =
[[ 0 1 6 3 3 6 5 8 8]
[ 1 0 5 4 2 5 4 7 7]
[21 20 0 1 18 6 9 8 10]
[22 21 13 0 19 7 10 9 11]
[ 3 2 3 4 0 3 2 5 5]
[15 14 6 7 12 0 3 2 4]
[14 13 7 8 11 1 0 3 3]
[13 12 8 9 10 2 1 0 2]
[11 10 10 11 8 4 3 2 0]]
路径 =
[[1. 2. 2. 4. 2. 2. 2. 2. 2.]
[1. 2. 3. 1. 5. 5. 5. 5. 5.]
[6. 6. 3. 4. 6. 6. 6. 6. 6.]
[8. 8. 6. 4. 8. 6. 8. 8. 8.]
[2. 2. 3. 3. 5. 7. 7. 7. 7.]
[8. 8. 3. 4. 8. 6. 8. 8. 8.]
[9. 9. 6. 6. 9. 6. 7. 6. 9.]
[9. 9. 7. 7. 9. 7. 7. 8. 9.]
[5. 5. 8. 8. 5. 8. 8. 8. 9.]

基于python的数学建模---图论模型(Floyd)的更多相关文章

  1. 基于Python的信用评分卡模型分析(二)

    上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分 ...

  2. 基于Python的信用评分卡模型分析(一)

    信用风险计量体系包括主体评级模型和债项评级两部分.主体评级和债项评级均有一系列评级模型组成,其中主体评级模型可用“四张卡”来表示,分别是A卡.B卡.C卡和F卡:债项评级模型通常按照主体的融资用途,分为 ...

  3. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  4. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  5. Python小白的数学建模课-15.图论基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

  6. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  7. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  8. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

  9. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  10. Python小白的数学建模课-16.最短路径算法

    最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...

随机推荐

  1. 大家都能看得懂的源码之 ahooks useVirtualList 封装虚拟滚动列表

    本文是深入浅出 ahooks 源码系列文章的第十八篇,该系列已整理成文档-地址.觉得还不错,给个 star 支持一下哈,Thanks. 简介 提供虚拟化列表能力的 Hook,用于解决展示海量数据渲染时 ...

  2. 基于 iframe 的微前端框架 —— 擎天

    vivo 互联网前端团队- Jiang Zuohan 一.背景 VAPD是一款专为团队协作办公场景设计的项目管理工具,实践敏捷开发与持续交付,以「项目」为核心,融合需求.任务.缺陷等应用,使用敏捷迭代 ...

  3. Windows Server体验之管理

    安装了只有命令行界面的Windows Server之后怎么去管理,对于传统的Windows管理员来说确实是比较棘手的.因为没有了图形化的管理界面,需要更多的去依赖Powershell或者cmd命令去做 ...

  4. .NET 部署Https(SSL)通过代码方式

    在上一个文章中,传送门,给大家介绍了怎么在配置文件中使用 Kestrel 部署 Https,正好今天有小伙伴稳问到:可以通过代码的方式实现 Kestrel 的 Https 的部署吗?答案是肯定的,我们 ...

  5. MinIO对接k8s使用

    文档地址:https://github.com/minio/operator/blob/master/README.md https://docs.min.io/minio/k8s/deploymen ...

  6. Alertmanager配置概述

    Alertmanager主要负责对Prometheus产生的告警进行统一处理,因此在Alertmanager配置中一般会包含以下几个主要部分: 全局配置(global):用于定义一些全局的公共参数,如 ...

  7. 在客户端电脑使用 kubectl 远程管理 Kubernetes

    日常工作中,可能需要在自己的笔记本电脑上执行 kubectl 命令以管理远程 Linux 服务器上的 Kubernetes 集群.通过调用 kubernetes API 来实现对 Kubernetes ...

  8. ERP是什么呢?

    ERP(Enterprise Resource Planning,企业资源计划)系统,是进行物质资源.资金资源和信息资源集成一体化管理的企业信息管理系统,ERP统领企业全局,为管理层服务,重心在于企业 ...

  9. P3629 [APIO2010] 巡逻 (树的直径)

    (这道题考察了求直径的两种方法......) 在原图中,每条边要经过两次,增加1条后,形成了一个环,那么环上的边只需要经过一次了(大量画图分析得),再增加一条又会形成一个环,如果这两个环有重叠,重叠部 ...

  10. 故障复盘究竟怎么做?美图SRE结合10年经验做了三大总结(附模板)

    美图崇尚的故障文化是 "拥抱故障,卓越运维",倡导的基准是 No-Blame, 即「不指责,重改进」.今年 9 月 TakinTalks 社区曾经分享过美图的三段式故障治理方法(美 ...