题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j)^{gcd(i,j)}$

神仙题...

首先可能会想到一个转化,就是$lcm(i,j)=\frac{ij}{gcd(i,j)}$

然后大力往下推式子,发现你推不下去了...

因为$d$在分母上!!!

然后我们考虑换一种推法:如果我们对$ij$同时除掉$gcd(i,j)$,这样的话问题就可以转化成这个样子:

$\sum_{d=1}^{n}\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}[gcd(i,j)\equiv 1](ijd)^{d}$

然后把$d$拿出来,维护一下后面那坨,有:

$\sum_{d=1}^{n}d^{d}\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{m}{d}}\sum_{t|gcd(i,j)}\mu(t)(ij)^{d}$

改变一下枚举顺序,得到:

$\sum_{d=1}^{n}d^{d}\sum_{t=1}^{\frac{n}{d}}\mu(t)\sum_{i=1}^{\frac{n}{dt}}\sum_{j=1}^{\frac{m}{dt}}(ijt^{2})^{d}$

(也就是在后面的$ij$乘积这一项中单独考虑$t$的贡献)

然后再整理,就得到:

$\sum_{d=1}^{n}d^{d}\sum_{t=1}^{\frac{n}{d}}\mu(t)t^{2d}\sum_{i=1}^{\frac{n}{dt}}i^{d}\sum_{j=1}^{\frac{m}{dt}}j^{d}$

然后我们就暴力计算即可,每次计算时都要先预处理出$[1,\frac{n}{d}]$的$i^{d}$的前缀和,再暴力查询即可,时间复杂度为调和级数$O(nlnn)$

注意每次求幂可以递推,不要快速幂!!!会退化成$O(nlog_{2}^{2}n)$!

代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
const ll mode=1000000007;
int pri[5000005],mu[5000005],used[5000005];
ll S[5000005],mi[5000005];
int cnt=0;
ll pow_mul(ll x,ll y)
{
ll ret=1;
while(y)
{
if(y&1)ret=ret*x%mode;
x=x*x%mode,y>>=1;
}
return ret;
}
void init()
{
mu[1]=1;
for(int i=2;i<=5000000;i++)
{
if(!used[i])pri[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*pri[j]<=5000000;j++)
{
used[i*pri[j]]=1;
if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
mu[i*pri[j]]=-mu[i];
}
}
}
int main()
{
init();
ll n,m;
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ll ans=0;
for(int i=1;i<=m;i++)mi[i]=1;
for(int i=1;i<=n;i++)
{
ll s=pow_mul(i,i);
S[0]=0;
for(int j=1;j<=m/i;j++)mi[j]=mi[j]*j%mode,S[j]=(S[j-1]+mi[j])%mode;
ll tempc=0;
for(int j=1;j<=n/i;j++)
{
ll temps=(mu[j]*mi[j]*mi[j]%mode+mode)%mode;
tempc=(tempc+temps*S[n/i/j]%mode*S[m/i/j]%mode)%mode;
}
ans=(ans+s*tempc)%mode;
}
printf("%lld\n",ans);
return 0;
}

bzoj 3561的更多相关文章

  1. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  2. ●BZOJ 3561 DZY Loves Math VI

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{ ...

  3. 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)

    3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description ...

  4. 【BZOJ 3561】 DZY Loves Math VI

    题目: 给定正整数n,m.求   题解: 水题有益身心健康.(博客园的辣鸡数学公式) 其实到这我想强上伯努利数,然后发现$n^2$的伯努利数,emmmmmm 发现这个式子可以算时间复杂度,emmmmm ...

  5. BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析

    推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...

  6. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  7. 【BZOJ】3561: DZY Loves Math VI

    题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...

  8. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  9. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  10. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

随机推荐

  1. sxt_(008_011)_servlet

    一.servlet简介 Servlet(Server Applet)是Java Servlet的简称,称为小服务程序或服务连接器,用Java编写的服务器端程序,具有独立于平台和协议的特性,主要功能在于 ...

  2. python图片转base64、base64转图片

    #图片转base64 import base64 with open("./1.png","rb") as f:#转为二进制格式 base64_data = b ...

  3. 【Java学习Day05】LDEA的安装和使用

    LDEA安装 进入LDEA所有版本下载地址,建议下载LDEA2018 3.6版本 安装好LDEA后双击打开LDEA点击Nest,选择合适的文件路径,个人不建议放在C盘 选择好合适的文件路径后点击Nex ...

  4. make vscode portable together with its extensions

    0. the goal make vscode poratable together with its extensions, so that the offline pc could make us ...

  5. ksfitappUI自动化(准备+安装环境)

    一.原理+安装 https://blog.csdn.net/weixin_30624825/article/details/94803252 https://www.kancloud.cn/guanf ...

  6. 晓晓---python文件的读写模式的理解

    1. python读取文件模式的自我理解:'r' open for reading (default)----只读模式打开文件,不能写:'w' open for writing, truncating ...

  7. e网通公告

    title:用户须知titleend<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\" \&qu ...

  8. 《TensorFlow+Keras自然语言处理实战》图书介绍

    #好书推荐##好书奇遇季#<TensorFlow+Keras自然语言处理实战>.当当京东天猫均有发售. https://item.jd.com/12788707.html 文后有本书配套源 ...

  9. 获取git远程分支仓库

    1:新建本地目录 2:进入并初始化这个目录 git init 3:新建一个文件,并添加 git add . 4: git commit -m "first commit" 5:新建 ...

  10. Quartus II 17.1新建一个流水灯

    诸图排序:从左到右,从上到下 一.软件设置 1.新建工程并添加FPGA芯片 2.新建.v文件并添加至顶层实体 3.元器件特性设置 4.分析与阐述(生成网表文件) 5.引脚分配 6.编译(包含分析与综合 ...