从零开始构建并编写神经网络---Keras【学习笔记】[1/2]
Keras简介:
  Keras是由纯python编写的基于theano/tensorflow的深度学习框架。
  Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras:
- 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
- 支持CNN和RNN,或二者的结合
- 无缝CPU和GPU切换

一、背景
本次构建神经网络最终目的:输入一张手写数字图片后,网络输出该图片对应的数字。
二、Keras代码实现
2.1 导入Keras库
import tensorflow as tf
from tensorflow.keras.datasets import mnist
如果没有安装TensorFlow,那么可以参考我之前的文章:重装CUDA和cuDNN(目的是装TensorFlow和pytorch)【个人梳理总结】
2.2 加载数据集(训练集和测试集)
我们使用Keras下的MNIST手写字符数据集,可以使用如下命令下载数据集:
(train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data()
'''
load_data() returns tuple of NumPy arrays: (x_train, y_train), (x_test, y_test).
train_images: uint8 NumPy array of grayscale image data with shapes (60000, 28, 28), containing the training data.
Pixel values range from 0 to 255.
train_labels: uint8 NumPy array of digit labels (integers in range 0-9) with shape (60000,) for the training data.
test_images: uint8 NumPy array of grayscale image data with shapes (10000, 28, 28), containing the test data.
Pixel values range from 0 to 255.
test_labels: uint8 NumPy array of digit labels (integers in range 0-9) with shape (10000,) for the test data.
'''
下面是选做步骤~
如果想验证一下各个变量的shape可以使用python中的断言关键字:
assert train_images.shape == (60000, 28, 28)
assert train_labels.shape == (10000, 28, 28)
assert test_images.shape == (60000,)
assert test_labels.shape == (10000,)
我们可以使用matplotlib先为我们显示一下测试集第一张图片,请记住它:
digit = test_images[0]
import matplotlib.pyplot as plt
plt.imshow(digit, cmap=plt.cm.binary)  # 输出二值化图像
plt.show()
需要安装matplotlib,请移步至Matplotlib 3.5.2 documentation
或者可以打印test_labels,记住第一个元素的label是什么。
print('test_labels', test_labels)
不出意外的话结果是“7”。

2.3 搭建神经网络
  Sequential序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”。
  可以通过向Sequential模型传递一个layer的list来构造该模型,也可以像本文使用的通过.add()方法一个个的将layer加入模型中:
from tensorflow.keras import models
from tensorflow.keras import layers
network = models.Sequential()  # 创建实例命名为network。Sequential意为顺序的,即序贯模型。
network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))  # 第一层需要加一个input_shape关键字参数
network.add(layers.Dense(10, activation='softmax'))  # ①输出层的units=10,意味着存在10个类别,实际意义为输出的结果是从0~10这是个数字。②我们想要将结果的分类数值范围限定在[0,1]之间,理论上activation也可以换成其他能够将结果限定在[0,1]的激活函数
关于Dense层的理解,课阅读深入理解 KERAS 中 DENSE 层参数
此时,我们可以通过一些命令整体查看搭建的神经网络(可任选其一):
network.summary()  # 输出一下搭建的神经网络框架总结
tf.keras.utils.plot_model(network, "my_first_network.png")  # 图形化输出
keras.utils.plot_model(network, "my_first_network_with_shape_info.png", show_shapes=True)  # 带有输入shape和输出shape的图形化输出
输出结果省略,各位可在实践中自行感受。
完成模型的搭建后,我们需要使用.compile()方法来编译模型:
- 优化器optimizer:该参数可指定为已预定义的优化器名,如rmsprop、adagrad,或一个Optimizer类的对象;
- 损失函数loss:该参数为模型试图最小化的目标函数,它可为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数;
- 指标列表metrics:对分类问题,我们一般将该列表设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数。指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典。
network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
2.4 数据预处理
2.4.1 对训练集和测试集的数据部分预处理
- 将每张图片数据由(28, 28)的二维数组变成(28 * 28)的一维数组
- 将灰度图中[0, 255]的整数灰度值归一化为[0, 1]的浮点数
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
2.4.2 对训练集和测试集的标签部分预处理
对应输出层的units=10,将标签做one-hot编码,用一个拥有10个元素的一位数组替换标签。我们需要把数值7变成一个含有10个元素的数组,然后在第8个元素设置为1,其他元素设置为0,即[0., 0., 0., 0., 0., 0., 0., 1., 0., 0.]
from tensorflow.keras.utils import to_categorical
print("before change:", test_labels[0])
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
print("after change: ", test_labels[0])
  你一定发现了我们使用了to_categorical函数。它是将类别向量(从0到nb_classes的整数向量)映射为二值类别矩阵, 用于应用到以categorical_crossentropy为目标函数的模型中.
  而我们在使用.compile()方法来编译模型参数中损失函数loss='categorical_crossentropy'。
2.5 开始对神经网络进行训练
network.fit(train_images, train_labels, epochs=5, batch_size=128)
"""
传入fit()各变量的含义:
train_images:用于训练的手写数字图片;
train_labels:对应的是图片的标记;
batch_size=128:每次网络从输入的图片数组中随机选取128个作为一组进行计算。
epochs=5: 每次计算训练数据将会被遍历5次。
fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况。
"""
2.6 测试神经网络的训练效果
  测试数据输入,检验网络学习后的图片识别效果。
  P.S. 识别效果与硬件有关(CPU/GPU)
本人使用的TensorFlow 2.5搭配GPU为:NVIDIA GeForce GTX 1660 Ti with Max-Q Design computeCapability: 7.5(辣鸡啊!多么想要一个3080!!!)
test_loss, test_acc = network.evaluate(test_images, test_labels, verbose=1)
# verbose: 日志记录——0:静默不显示任何信息,1(default):输出进度条记录
print('test_loss', test_loss)  # 打印loss
print('test_acc', test_acc)  # 打印accuracy
  展示训练过程输出信息:

2.7 神经网络的预测能力
随机输入一张手写数字图片到网络中,看看它的识别效果
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
digit = test_images[1]  # 挑选测试集第2张图片,是数字2
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()

test_images = test_images.reshape((10000, 28*28))
res = network.predict(test_images)  # 应用已经训练好的模型进行预测
for i in range(res[1].shape[0]):  # 提取第二个预测结果,即对数字2的预测结果
    if res[1][i] == 1:  # 看结果中10个元素的数组中第几位是1
        print("the number for the picture is : ", i)  # 第几位是1就输出这个数字的预测结果是几
        break
  展示预测结果输出:

结尾
  至此,我们完成了借助Keras编写出一个简单的预测手写数字的神经网络并完成了训练、测试和预测过程,实现了我们最初的目的。
  当然Keras的功能强大远不止于本文所展示的内容,更多丰富且便利的功能请各位继续参考附录学习探索。
  接下来我们还将继续学习,尝试不借助Keras而是依托numpy等库,更加贴近“从零开始”构建一个神经网络。
  最最重要的,本文一定存在错误和不足,恳请各位不吝赐教,不吝赐教谢谢!
附录一:有帮助的文档
1. 【官方】The Functional API
2. 【官方】The Model class
3. 【官方】The Sequential class
4. 【官方】Layer activation functions
5. Keras中文文档
附录二:网络上的好文分享
1. 深度学习笔记 目标函数的总结与整理 model.compile(loss='categorical_crossentropy'
从零开始构建并编写神经网络---Keras【学习笔记】[1/2]的更多相关文章
- 官网实例详解-目录和实例简介-keras学习笔记四
		官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras 版权声明: ... 
- 卷积神经网络(CNN)学习笔记1:基础入门
		卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01 | In Machine Learning | 9 Comments | 14935 Vie ... 
- Keras学习笔记——Hello Keras
		最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ... 
- keras 学习笔记:从头开始构建网络处理 mnist
		全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ... 
- Keras学习笔记
		Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ... 
- Keras学习笔记(完结)
		使用Keras中文文档学习 基本概念 Keras的核心数据结构是模型,也就是一种组织网络层的方式,最主要的是序贯模型(Sequential).创建好一个模型后就可以用add()向里面添加层.模型搭建完 ... 
- 卷积神经网络 CNN 学习笔记
		激活函数Relu 最近几年卷积神经网络中,激活函数往往不选择sigmoid或tanh函数,而是选择relu函数.Relu函数的定义 $$f(x)= max(0,x)$$ Relu函数图像如下图所示: ... 
- Keras学习笔记1--基本入门
		""" 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ... 
- [matlab]bp神经网络工具箱学习笔记
		基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural ne ... 
随机推荐
- SourceMonitor的安装
			SourceMonitor 本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧! 中文名 SourceMonitor 软件大小 1743KB 软件语言 英文 软件类别 国外软件 ... 
- scrapy爬虫简单案例(简单易懂 适合新手)
			爬取所有的电影名字,类型,时间等信息 1.准备工作 爬取的网页 https://www.ddoutv.com/f/27-1.html 创建项目 win + R 打开cmd输入 scrapy start ... 
- Spring Security 一键接入验证码登录和小程序登录
			最近实现了一个多端登录的Spring Security组件,用起来非常丝滑,开箱即用,可插拔,而且灵活性非常强.我觉得能满足大部分场景的需要.目前完成了手机号验证码和微信小程序两种自定义登录,加上默认 ... 
- smdms超市订单管理系统之登录功能
			一.超市订单管理系统准备阶段 Supermarket order management system 创建数据库 数据库代码放置如下 点击查看数据库address代码 CREATE TABLE `sm ... 
- golang开发:go并发的建议
			这个是前段时间看到Go语言的贡献者与布道师 Dave Cheney对Go并发的建议或者叫使用的陷阱(不是我自己的建议),结合自己最近几年对gorotine的使用,再回头看这几条建议,真的会茅塞顿开,觉 ... 
- DC-1 靶机渗透
			DC-1 靶机渗透 *概况*: 下载地址 https://www.vulnhub.com/entry/dc-1,292/ *官方描述:* DC-1 is a purposely built vulne ... 
- python——如何import包目录
			文件位置 文件所在位置包括 , 源根目录的位置 该文件位置(也可以叫相对位置). 导入包的时候会从文件位置进行查找,并导入. 导入包 1. 什么是包? pycharm中包的图片 其中文件夹上有个圆点的 ... 
- Linux shell中2>&1的含义解释
			https://blog.csdn.net/zhaominpro/article/details/82630528 
- 函数 装饰器 python
			今日内容概要 1.闭包函数 2.闭包函数的实际应用 3.装饰器简介(重点加难点) 4.简易版本装饰器 5.进阶版本装饰器 6.完整版本装饰器 7.装饰器模板(拷贝使用即可) 8.装饰器语法糖 9.装饰 ... 
- 2021.08.05 P2168 荷马史诗(哈夫曼树模板)
			2021.08.05 P2168 荷马史诗(哈夫曼树模板) [P2168 NOI2015] 荷马史诗 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.k叉哈夫曼树如果子结 ... 
