Tensorboard SummaryWriter()
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim from torch.utils.tensorboard import SummaryWriter batch_size_list = [100, 1000, 10000]
lr_list = [.01, .001, .0001, .00001]
shuffle = [True,False]
def get_num_correct(preds, labels):
return preds.argmax(dim=1).eq(labels).sum().item() train_set = torchvision.datasets.FashionMNIST(
root='./data/FashionMNIST',
train=True,
download=True,
transform=transforms.Compose([transforms.ToTensor()])
) # data_loader = torch.utils.data.DataLoader(train_set,batch_size=batch_size,shuffle=True) # shuffle=True class Network(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)
self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5) self.fc1 = nn.Linear(in_features=12 * 4 * 4, out_features=120)
self.fc2 = nn.Linear(in_features=120, out_features=60)
self.out = nn.Linear(in_features=60, out_features=10) def forward(self, t):
# (1) input layer
t = t # (2) hidden conv layer
t = self.conv1(t)
t = F.relu(t)
t = F.max_pool2d(t, kernel_size=2, stride=2) # (3) hidden conv layer
t = self.conv2(t)
t = F.relu(t)
t = F.max_pool2d(t, kernel_size=2, stride=2) # (4) hidden Linear layer
t = t.reshape(-1, 12 * 4 * 4) # -1表示对行没约束,反正是12*4*4列
t = self.fc1(t)
t = F.relu(t)
# (5) hidden Linear layer
t = self.fc2(t)
t = F.relu(t)
# (6) output layer
t = self.out(t)
# t=F.softmax(t,dim=1) #此处不使用softmax函数,因为在训练中我们使用了交叉熵损失函数,而在torch.nn函数类中,已经在其输入中隐式的
# 执行了一个softmax操作,这里我们只返回最后一个线性变换的结果,也即是 return t,也即意味着我们的网络将使用softmax操作进行训练,但在
# 训练完成后,将不需要额外的计算操纵。 return t network = Network() for batch_size in batch_size_list:
for lr in lr_list:
network = Network() data_loader = torch.utils.data.DataLoader(
train_set, batch_size=batch_size
)
optimizer = optim.Adam(
network.parameters(), lr=lr
) images, labels = next(iter(data_loader))
grid = torchvision.utils.make_grid(images) comment=f' batch_size={batch_size} lr={lr}'
tb = SummaryWriter(comment=comment)
tb.add_image('images', grid)
tb.add_graph(network, images) for epoch in range(5):
total_loss = 0
total_correct = 0
for batch in data_loader:
images, labels = batch # Get Batch
preds = network(images) # Pass Batch
loss = F.cross_entropy(preds, labels) # Calculate Loss
optimizer.zero_grad() # Zero Gradients
loss.backward() # Calculate Gradients
optimizer.step() # Update Weights total_loss += loss.item() * batch_size#这里上述用的是mini-batch训练方法,一个batch得loss会被平均,所以乘以size得到总和
total_correct += get_num_correct(preds, labels) tb.add_scalar(
'Loss', total_loss, epoch
)
tb.add_scalar(
'Number Correct', total_correct, epoch
)
tb.add_scalar(
'Accuracy', total_correct / len(train_set), epoch
) for name, param in network.named_parameters():
tb.add_histogram(name, param, epoch)
tb.add_histogram(f'{name}.grad', param.grad, epoch) print(
"epoch", epoch
,"total_correct:", total_correct
,"loss:", total_loss
)
tb.close() f'''
from itertools import product parameters=dict(lr=[.01,.001],batch_size=[10,100,1000],shuffle=[True,False])
# for i,j in parameters.items():
# print(i,j,sep='\t')
para_values=[value for value in parameters.values()]
for lr,batch_size,shuffle in product(*para_values):#这里的星号告诉乘积函数把列表中的每个值作为参数,而不是把列表本身作为参数来对待
comment=f' batch_size={batch_size} lr={lr} shuffle={shuffle}'
print(lr,batch_size,shuffle)
'''
Tensorboard SummaryWriter()的更多相关文章
- (转)Darknet模型与Tensorflow模型相互转换
目前darknet框架下的模型训练都是在C环境下训练的,难免较为晦涩,如果能将模型转换到Tensorflow环境下完成模型的训练,在将训练好的权重转为Darknet可以识别的权重部署到实际应用中.这样 ...
- Pytorch入门中 —— 搭建网络模型
本节内容参照小土堆的pytorch入门视频教程,主要通过查询文档的方式讲解如何搭建卷积神经网络.学习时要学会查询文档,这样会比直接搜索良莠不齐的博客更快.更可靠.讲解的内容主要是pytorch核心包中 ...
- Pytorch入门下 —— 其他
本节内容参照小土堆的pytorch入门视频教程. 现有模型使用和修改 pytorch框架提供了很多现有模型,其中torchvision.models包中有很多关于视觉(图像)领域的模型,如下图: 下面 ...
- Tensorflow学习笔记3:TensorBoard可视化学习
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...
- TensorFlow深度学习笔记 Tensorboard入门
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://ww ...
- TensorBoard 使用和问题解决
TensorBoard 使用和问题解决 一.启动TensorBoard 1) python tensorflow/tensorboard/tensorboard.py --logdir=path/to ...
- 学习TensorFlow,TensorBoard可视化网络结构和参数
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...
- Tensorboard可视化
# -*- coding: utf-8 -*-"""Created on Sun Nov 5 09:29:36 2017 @author: Admin"&quo ...
- 学习笔记CB013: TensorFlow、TensorBoard、seq2seq
tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.S ...
随机推荐
- for循环打印九九乘法表
学习目标: 熟练掌握 for 循环的使用 例题: 需求:打印九九乘法表 代码如下: // 九九乘法表 // row 为行,col为列 for(int row = 1; row < 10; row ...
- Exchange日志清理
1.清理日志--完整备份 Exchange Server 2013被部署在Windows Server 2012 及以上版本的操作系统中,使用操作系统内的"Windows Server Ba ...
- MongoDB 支持地理空间数据存储
MongoDB 支持地理空间数据存储 官方文档 https://docs.mongodb.com/manual/geospatial-queries/ MongoDB 支持对于地理空间数据的查询操作. ...
- GIL全局解释器锁、协程运用、IO模型
GIL全局解释器锁 一.什么是GIL 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念.就好比C是一套语言(语法)标准,但是可以用不 ...
- Linux下安装Typora
系统:Ubuntu16.0 下载链接:https://www.typora.io/#linux 参考链接:https://www.cnblogs.com/wenkangzero/p/13202415. ...
- 『忘了再学』Shell基础 — 10、Bash中的特殊符号(二)
提示:本篇文章接上一篇文章,主要说说()小括号和{}大括号的区别与使用. 8.()小括号 ():用于一串命令执行时,()中的命令会在子Shell中运行.(和下面大括号一起说明) 9.{}大括号 {}: ...
- JavaScript学习总结2-对象
JavaScript中对象除了最后一个属性以外都在结尾加逗号,同时所有属性都要在{ }内 1 <!DOCTYPE html> 2 <html lang="en"& ...
- 输入一个字符串,内有数字和非数字字符。例如:a123x456 17960 302tab5876。将其中连续的数字作为一个整数,依次存放到一维数组a中,例如123放在a[0],456放在a[1]……统计共有多少个整数,并输出这些数。
题目内容:输入一个字符串,内有数字和非数字字符.例如:a123x456 17960 302tab5876.将其中连续的数字作为一个整数,依次存放到一维数组a中,例如123放在a[0],456放在a[1 ...
- 我用 CSS3 实现了一个超炫的 3D 加载动画
今天给大家带来一个非常炫酷的CSS3加载Loading动画,它的特别之处在于,整个Loading动画呈现出了3D的视觉效果.这个Loading加载动画由12个3D圆柱体围成一个椭圆形,同时这12个圆柱 ...
- CSS简单的网页布局
1 <!DOCTYPE html> 2 <html lang="en"> 3 <head> 4 <meta charset="U ...