题面

你想从

N

N

N 个候选人中选 3 个人。

每个人有五个属性

A

i

,

B

i

,

C

i

,

D

i

,

E

i

A_i,B_i,C_i,D_i,E_i

Ai​,Bi​,Ci​,Di​,Ei​。

一种选人方案假设选了三个人

x

,

y

,

z

x,y,z

x,y,z ,那么这个方案的力量Strength就是

min

{

max

{

A

x

,

A

y

,

A

z

}

max

{

B

x

,

B

y

,

B

z

}

max

{

C

x

,

C

y

,

C

z

}

max

{

D

x

,

D

y

,

D

z

}

max

{

E

x

,

E

y

,

E

z

}

}

\min\left\{\begin{matrix} \max\{A_x,A_y,A_z\}\\ \max\{B_x,B_y,B_z\}\\ \max\{C_x,C_y,C_z\}\\ \max\{D_x,D_y,D_z\}\\ \max\{E_x,E_y,E_z\} \end{matrix}\right\}

min⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧​max{Ax​,Ay​,Az​}max{Bx​,By​,Bz​}max{Cx​,Cy​,Cz​}max{Dx​,Dy​,Dz​}max{Ex​,Ey​,Ez​}​⎭⎪⎪⎪⎪⎬⎪⎪⎪⎪⎫​

力量Strength最大的方案的力量Strength是多少。

输入分别给出

N

N

N 和

N

N

N 行整数

A

i

,

B

i

,

C

i

,

D

i

,

E

i

A_i,B_i,C_i,D_i,E_i

Ai​,Bi​,Ci​,Di​,Ei​。

输出一行一个整数表示答案。

3

N

3000

,

1

A

i

,

B

i

,

C

i

,

D

i

,

E

i

1

0

9

3\leq N\leq 3000,1\leq A_i,B_i,C_i,D_i,E_i \leq 10^9

3≤N≤3000,1≤Ai​,Bi​,Ci​,Di​,Ei​≤109.

Sample Input

10
6 7 5 18 2
3 8 1 6 3
7 2 8 7 7
6 3 3 4 7
12 8 9 15 9
9 8 6 1 10
12 9 7 8 2
10 3 17 4 10
3 1 3 19 3
3 14 7 13 1

Sample output

10

题解

首先,我们会想到一种

N

3

N^3

N3 的暴力做法。

之所以这样过不了,是因为我们想知道的力量与每个属性都有关,又跟每个属性的最大值有关,属性不同的有

N

N

N 个人,因此时间复杂度便上天。

为了消除这些限制,同时发现这道题相当于求最小值前提下的最大值,于是我们不妨想想二分

我们二分一个答案,表示每项属性的最大值都要大于等于这个值。那么此时,相当于定了一个标准——一个属性大于等于这个值为合格,否则不合格。要求是要让选出的三个人中每项属性都至少有一个人合格。此时,由于我们想知道的是否合法每个属性的合格与否有关,而每个属性只有两种情况:合格/不合格,因此,把每项属性合格情况(一共

2

5

2^5

25 种)相同的合并到一起,我们相当于只有

2

5

=

32

2^5=32

25=32 位候选人了!然后再随便用一个三次方的暴力(时间

2

15

2^{15}

215)就可以解决问题,或者稍加dp优化变成平方,跑到最优解 6~8 ms。

时间复杂度

O

(

log

X

(

5

N

+

2

10

)

)

O(\log X(5N+2^{10}))

O(logX(5N+210))

CODE

#include<map>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 3005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
int a[MAXN][10];
bool dp[4][1<<5|5];
bool check(int val) {
memset(dp,0,sizeof(dp));
for(int i = 1;i <= n;i ++) {
int S = 0;
for(int j = 1;j <= 5;j ++) {
if(a[i][j] >= val) S |= (1<<(j-1));
}
dp[1][S] = 1;
}
dp[1][0] = dp[2][0] = dp[3][0] = 1;
for(int kk = 1;kk <= 2;kk ++) {
for(int i = 0;i < (1<<5);i ++) {
if(dp[kk][i])
for(int j = 0;j < (1<<5);j ++) {
dp[kk+1][i|j] |= dp[1][j];
}
}
}
return dp[3][(1<<5)-1];
}
int main() {
n = read();
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= 5;j ++) {
a[i][j] = read();
}
}
int ans = 0;
for(int i = 30;i >= 0;i --) {
if(ans+(1<<i) <= 1000000000 && check(ans+(1<<i))) ans += (1<<i);
}
printf("%d\n",ans);
return 0;
}

别的做法

暴力

有一个

15

N

2

15*N^2

15∗N2 的做法,详见PPL的博客
其核心思想在于:最后的方案中,不可能三个人都贡献了

2

\geq2

≥2 个最大值,因此一定有一个人贡献了

1

\leq 1

≤1 个最大值,那么不妨就令这个人为这个属性中可以选的最大的一个人,于是暴力可以少一维。

Dynamic Programming

官方题解中的第二种做法。

题意可以转化为:你先选三个候选人

x

,

y

,

z

x,y,z

x,y,z,然后每个属性你都在三个人中选一个人的拿出来,要让这五个数的最小值最大。不难发现这样和原题面(贪心地选最大的)最终答案是一样的。

那么就可以设计出一个 DP:

d

p

[

i

]

[

j

]

[

k

]

dp[i][j][k]

dp[i][j][k] 表示前

i

i

i 个人中选了

j

j

j 个人(

j

3

j\leq3

j≤3) ,属性状态为

k

k

k(

k

2

5

k\leq 2^5

k≤25) 时的最大答案(

k

k

k 的二进制第

i

i

i 位表示第

i

i

i 种属性是否已经选了人),转移的时候保证每种属性只选一个人。转移可以

O

(

5

)

O(5)

O(5) 。

那么总时间就是

O

(

15

N

2

5

)

O(15N*2^5)

O(15N∗25)。

官方代码

Atcoder ZONe Energy Programming Contest C - MAD TEAM(二分)的更多相关文章

  1. AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...

  2. AtCoder diverta 2019 Programming Contest 2

    AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...

  3. 【AtCoder】M-SOLUTIONS Programming Contest

    M-SOLUTIONS Programming Contest A - Sum of Interior Angles #include <bits/stdc++.h> #define fi ...

  4. 【AtCoder】AISing Programming Contest 2019

    本来以为是1199rated的..仔细一看发现是1999,所以就做了一下 这场涨分很轻松啊...为啥又没打 等pkuwc考完我一定打一场atcoder(咕咕咕,咕咕咕,咕咕咕咕咕咕咕~) 但是其实我思 ...

  5. 【AtCoder】Yahoo Programming Contest 2019

    A - Anti-Adjacency K <= (N + 1) / 2 #include <bits/stdc++.h> #define fi first #define se se ...

  6. 【AtCoder】KEYENCE Programming Contest 2019

    A - Beginning 这个年份恐怕需要+2 #include <bits/stdc++.h> #define fi first #define se second #define p ...

  7. 【AtCoder】Dwango Programming Contest V题解

    A - Thumbnail 题意简述:给出N个数,找出N个数中和这N个数平均值绝对值最小的数 根据题意写代码即可= = #include <bits/stdc++.h> #define f ...

  8. zoj The 12th Zhejiang Provincial Collegiate Programming Contest Team Formation

    http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5494 The 12th Zhejiang Provincial ...

  9. Codeforces Gym101572 B.Best Relay Team (2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017))

    2017-2018 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2017) 今日份的训练,题目难度4颗星,心态被打崩了,会的算法太少了,知 ...

随机推荐

  1. Dubbo的基本使用

    Dubbo分为提供者和消费方  并且两者都要注册到ZK上 提供者 注解    @Service   这是dubbo包下的 消费组 注解    @Reference 远程注入 第一步导入依赖 <! ...

  2. Gitee整改之思考

    本文主要内容如下: 1.Gitee是什么? 2.Gitee与Github的区别有哪些? 3.为什么要使用Gitee? 4.Gitee的商业模式是怎样的? 5.Gitee为何会被整改? 6.Gitee这 ...

  3. Blazor WebAssembly + Grpc Web = 未来?

    Blazor WebAssembly是什么 首先来说说WebAssembly是什么,WebAssembly是一个可以使C#,Java,Golang等静态强类型编程语言,运行在浏览器中的标准,浏览器厂商 ...

  4. 面试突击58:truncate、delete和drop的6大区别

    在 MySQL 中,使用 truncate.delete 和 drop 都可以实现表删除,但它们 3 个的使用场景和执行效果完全不同,接下来我们来盘点一下. truncate.delete.drop区 ...

  5. CSS SandBox

    引言 本篇文章主要介绍的是关于CSS Sandbox的一些事情,为什么要介绍这个呢?在我们日常的开发中,样式问题其实一直是一个比较耗时的事情,一方面我们根据 UI 稿不断的去调整,另一方面随着项目越来 ...

  6. SAP Using Text Modules in Adobe Forms

    In this demo we will create an adobe form which displays text in two different languages (English or ...

  7. linux目录结构及定时任务

    1. Linux的根目录(最顶层的目录) windows系统有根目录:c盘的根目录就是c:\ d盘的根目录就是d:\ 每个盘(分区)都有自己的根目录 Linux系统, 也支持多个分区 Linux的分区 ...

  8. Android (微信扫码登录) 获取微信二维码+扫码登录

    话不多说  直接上菜! 一.因为是微信扫码登录,所有要在微信开放平台  微信开放平台 (qq.com) 进行注册----- 如下 1.资源中心 里面也有详细的官方讲解,里面也有demo  可以下载 2 ...

  9. 效率效率!如何使用Python读写多个sheet文件

    前言 怎么样使用Python提高自己的工作效率,今天就给大家分享这个吧. 我们经常用pandas读入读写excel文件,经常会遇到一个excel文件里存在多个sheet文件,这个时候,就需要一次性读取 ...

  10. Qt+ECharts开发笔记(二):Qt窗口动态调整大小,使ECharts跟随Qt窗口大小变换而变换大小

    前言   上一篇将ECharts嵌入Qt中,在开始ECharts使用之前,还有一个很重要的功能,就是在窗口变换大小的时候,ECharts的图表尺寸也要跟随Qt窗口变换大小而变换大小.   Demo演示 ...