题面

题解

把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线,

我们可以枚举答案,然后乘上方案数。

根据卡塔兰数的通项公式公式的推导过程, 可以得出方案数的解法,

对于这道题的图中,求碰到过红线的方案数则是把第一次碰到红线后的步骤都沿红线轴对称折叠过去,那么就唯一对应一个从(0,0)走到(m+f(n),n-f(n))的方案,方案数就为C(n+m,n-f(n)) (这里是组合数)

我们再容斥一小下,刚好只走到y=x-f(n)的方案数等于碰到过y=x-f(n)的方案数减去碰到过y=x-f(n)-1的方案数,为C(n+m,n-f(n)) - C(n+m,n-f(n)-1),

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
#define MAXN 2005
#define MAXM 35
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
//#define int LL
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
const int jzm = 998244853;
int n,m,i,j,s,o,k;
int C[MAXN<<1][MAXN<<1];
int main() {
C[0][0] = 1;
for(int i = 1;i <= 4000;i ++) {
C[i][0] = 1;
for(int j = 1;j <= i;j ++) {
C[i][j] = (C[i-1][j] +0ll+ C[i-1][j-1]) % jzm;
}
}
n = read();m = read();
int ans = 0,pre = 0,no = 0;
for(int i = n;i >= max(1,n-m);i --) {
no = C[n+m][n-i];
ans = (ans +0ll+ (no +0ll+ jzm - pre) % jzm *1ll* i % jzm) % jzm;
pre = no;
}
printf("%d\n",ans);
return 0;
}

CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)的更多相关文章

  1. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  2. CF1204E Natasha, Sasha and the Prefix Sums(组合数学)

    做法一 \(O(nm)\) 考虑\(f(i,j)\)为i个+1,j个-1的贡献 \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i ...

  3. CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)

    传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...

  4. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

  5. E. Natasha, Sasha and the Prefix Sums

    http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...

  6. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  7. catalan卡塔兰数

    令h(0)=1,h(1)=1,卡塔兰数数满足递归式:h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系;还可 ...

  8. 卡塔兰数(Catalan)

    卡塔兰数(Catalan) 原理: 令h(0)=1,h(1)=1. 卡塔兰数满足递推式:h(n)=h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0)(n>=2) ...

  9. [HNOI2009]有趣的数列(卡塔兰数,线性筛)

    [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1< ...

随机推荐

  1. Full卷积、Same卷积、Valid卷积、带深度的一维卷积

    转载和参考以下几个链接:https://www.cnblogs.com/itmorn/p/11177439.html; https://blog.csdn.net/jack__linux/articl ...

  2. 基于Kubernetes v1.24.0的集群搭建(二)

    上一篇文章主要是介绍了,每台虚拟机的环境配置.接下来我们开始有关K8S的相关部署. 另外补充一下上一篇文章中的K8S的change​log链接: https://github.com/kubernet ...

  3. 龙芯发布 .NET 6 SDK 6.0.105-ea1 LoongArch64 版本

    龙芯平台.NET,是龙芯公司基于开源社区.NET独立研发适配的龙芯版本,我们会长期进行安全更新和错误修复,并持续进行性能优化.社区.NET7版本开始已经原生支持LoongArch64架构源码.具备如下 ...

  4. 【图解源码】Zookeeper3.7源码分析,包含服务启动流程源码、网络通信源码、RequestProcessor处理请求源码

    Zookeeper3.7源码剖析 能力目标 能基于Maven导入最新版Zookeeper源码 能说出Zookeeper单机启动流程 理解Zookeeper默认通信中4个线程的作用 掌握Zookeepe ...

  5. FS2K人脸素描属性识别

    人脸素描属性识别 代码:https://github.com/linkcao/FS2K_extract 问题分析 需要根据FS2K数据集进行训练和测试,实现输入一张图片,输出该图片的属性特征信息,提取 ...

  6. python小题目练习(十)

    题目:根据生日判断星座 需求:实现如下图所示结果 代码展示: """Author:mllContent:根据生日判断星座Date:2020-11-23"&quo ...

  7. Java方法读取文件内容

    一.针对文件内容的读取,在平时的工作中想必是避免不了的操作,现在我将自己如何用java方法读取文件中内容总结如下:废话不多说,直接上代码: 1 public static void main(Stri ...

  8. 记一次 .NET 某电厂Web系统 内存泄漏分析

    一:背景 1. 讲故事 前段时间有位朋友找到我,说他的程序内存占用比较大,寻求如何解决,截图就不发了,分析下来我感觉除了程序本身的问题之外,.NET5 在内存管理方面做的也不够好,所以有必要给大家分享 ...

  9. c# 添加指定扩展名的系统右键菜单(Windows11以前)

    在上篇文章c# 添加系统右键菜单(Windows11以前)中我们说了怎么在文件夹上增加一个菜单项,但是我们可能还需要给某个单独的扩展名添加右键菜单. 这里我们不用常见的扩展名来做,我们新做一个.jx的 ...

  10. 发明Linux的帕特里克

    Slackware Linux 是目前市场存活时间最长的 Linux 发行版之一,它基于一个叫做 SLS(Soft Landing Systems)的 Linux 项目而设计,易于使用和稳定. Sla ...