CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)
题面

题解
把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线,

我们可以枚举答案,然后乘上方案数。
根据卡塔兰数的通项公式公式的推导过程, 可以得出方案数的解法,


对于这道题的图中,求碰到过红线的方案数则是把第一次碰到红线后的步骤都沿红线轴对称折叠过去,那么就唯一对应一个从(0,0)走到(m+f(n),n-f(n))的方案,方案数就为C(n+m,n-f(n)) (这里是组合数)
我们再容斥一小下,刚好只走到y=x-f(n)的方案数等于碰到过y=x-f(n)的方案数减去碰到过y=x-f(n)-1的方案数,为C(n+m,n-f(n)) - C(n+m,n-f(n)-1),

CODE
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
#define MAXN 2005
#define MAXM 35
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
//#define int LL
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
const int jzm = 998244853;
int n,m,i,j,s,o,k;
int C[MAXN<<1][MAXN<<1];
int main() {
C[0][0] = 1;
for(int i = 1;i <= 4000;i ++) {
C[i][0] = 1;
for(int j = 1;j <= i;j ++) {
C[i][j] = (C[i-1][j] +0ll+ C[i-1][j-1]) % jzm;
}
}
n = read();m = read();
int ans = 0,pre = 0,no = 0;
for(int i = n;i >= max(1,n-m);i --) {
no = C[n+m][n-i];
ans = (ans +0ll+ (no +0ll+ jzm - pre) % jzm *1ll* i % jzm) % jzm;
pre = no;
}
printf("%d\n",ans);
return 0;
}
CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)的更多相关文章
- [CF1204E]Natasha,Sasha and the Prefix Sums 题解
前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...
- CF1204E Natasha, Sasha and the Prefix Sums(组合数学)
做法一 \(O(nm)\) 考虑\(f(i,j)\)为i个+1,j个-1的贡献 \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i ...
- CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)
传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- E. Natasha, Sasha and the Prefix Sums
http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...
- Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学
Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...
- catalan卡塔兰数
令h(0)=1,h(1)=1,卡塔兰数数满足递归式:h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系;还可 ...
- 卡塔兰数(Catalan)
卡塔兰数(Catalan) 原理: 令h(0)=1,h(1)=1. 卡塔兰数满足递推式:h(n)=h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0)(n>=2) ...
- [HNOI2009]有趣的数列(卡塔兰数,线性筛)
[HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1< ...
随机推荐
- 【python】tile函数简单介绍
转:https://blog.csdn.net/april_newnew/article/details/44176059格式:tile(A,reps)* A:array_like* 输入的array ...
- Dev C++编写C/C++程序 出现[Error] ld returned 1 exit status报错分析及解决
debug系列第一弹,不知道大家写程序的时候是不是都遇到过如题的报错. 我本人是经常遇到这行熟悉的令人不知所措的报错,可能是我太笨了 有时候百度无果也差不到原因,那就汇总一下目前我遇到的情况吧--持续 ...
- 接口开发-restful
数据库表设计 1 --员工表 2 create table Employee 3 ( 4 id NUMBER primary key, 5 employeeID NUMBER not null, 6 ...
- JS:this关键字1
this 代表了当前的对象,哪个对象调用了this所在的函数,this就代表了哪个对象: 例1: function fn(){ var a = 1; console.log(this) } fn() ...
- BUUCTF-面具下的flag
面具下的flag 010editor打开发现存在ZIP binwalk -e mianju.jpg 分离压缩包出来 但是存在密码.猜测是伪加密,直接编辑器搜504B0102找到第五组字符组改为00即可 ...
- SAP Web Dynpro-集成消息
您可以使用消息管理器将消息集成到消息日志中. 您可以使用Web Dynpro代码向导打开消息管理器. 您可以从工具栏中打开Web Dynpro代码向导. 当您的ABAP工作台处于更改模式或编辑视图或控 ...
- SAP BOM 读取
1.查找 物料号.工厂.物料描述. 表:MARA MARC MAKT 逻辑: 输入物料(选择选项)中的物料编号(MARA-MATNR)和 输入工厂(选择选项 ...
- 浅议.NET遗留应用改造
浅议.NET遗留应用改造 TLDR:本文介绍了遗留应用改造中的一些常见问题,并对改造所能开展的目标.原则.策略进行了概述. 一.背景概述 1.概述 或许仅"遗留应用"这个标题就比较 ...
- 项目: ATM+购物车
ATM+购物车 项目文件: 介绍 以下为文件夹层次和内容: readme.md 1. 需求 模拟银行取款 + 购物全过程 1.注册 2.登录 3.提现 4.还款 5.转账 6.查看余额 7.查看购物车 ...
- android stdio开发抖音自动点赞案例
最近做了一个安卓开发自动刷抖音. 点赞. 评论等等养号行为. 总结一下知识点和遇到的一些问题: 知识点: 1. 使用acessibility mode 对抖音自动化操作. android stdio中 ...