[USACO2021DEC] HILO 踩标做法
[USACO2021DEC] HILO
Solution
参考自 官方题解 里提到的一篇 Obliteration.pdf,但是里面作者写出了极多错误。。。然后式子还错错得对了。
令 \(y=n-x\)。
我们考虑枚举每一对数的贡献,不妨设为 \(j,i\ (j\in [x+1,n],i\in [1,x])\):
\]
对于 \(k\in [1,i)\),它们若位于 \(X,Z\) 则没有限制,位于 \(Y\) 则得满足它不是 "LO";
对于 \(k\in [i+1,x]\),它们只能位于 \(Z\);
对于 \(k\in [x+1,j)\),它们只能位于 \(Z\);
对于 \(k\in [j+1,n]\),它们没有任何限制。
我们枚举第一类位于 \(X,Y\) 的个数 \(m\),限制是位于 \(X\) 中的 \(\max\) 大于 \(Y\) 中的 \(\max\),显然两者是对称的,所以方案数为 \(\binom{i-1}{m} \cdot \frac{(m+1)!+[m=0]}{2}\)。
接下来推式子:
\]
其中 \(H_n\) 是调和级数前缀和。
于是我们得到了可以对 \(x=0\sim n\) 均 \(\mathcal O(1)\) 求解的线性做法。
时间复杂度 \(\mathcal O(n)\)。
[USACO2021DEC] HILO 踩标做法的更多相关文章
- 【NFLSPC#4】嘉然今天吃什么(踩标做法)
[NFLSPC#4]嘉然今天吃什么 感谢 @zhoukangyang 神仙的帮助. Solution 令 \(s_i\) 表示选了 \(i\) 个灯后仍然不合法的概率,那么 \(E(x)=\sum_{ ...
- 「ARC 139F」Many Xor Optimization Problems【线性做法,踩标】
「ARC 139F」Many Xor Optimization Problems 对于一个长为 \(n\) 的序列 \(a\),我们记 \(f(a)\) 表示从 \(a\) 中选取若干数,可以得到的最 ...
- 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 1878 Solved: 846[Submit][Status ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- SCOI 2018 划水记
(此处不应有目录,省选爆零的过程得慢慢看) Day -n 一诊 说真的,在没看到“第一次诊断性考试”之前,一直以为是“一整”,真是可怕,初中教育都开始像UW中的最高祭司学习了. 感觉题目很gg.于是考 ...
- LOJ3048 「十二省联考 2019」异或粽子
题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...
- NOIP练习赛题目4
肥得更高 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 自2009年以来,A.B站的历史就已经步入了农业变革的黎明期.在两站的 ...
- 【数学】【P5150】 生日礼物
Description 给定 \(n\),求 \[\sum_{i}~\sum_j~[lcm(i,j)~=~n]\] input 一行一个整数代表 \(n\) Output 一行一个整数代表答案 Hin ...
- Wolfycz的娱乐赛题解
现在不会放题解的!比赛完了我会把题解放上来的 祝大家玩的愉快~ 等会,cnblogs不会显示更新时间?我禁赛我自己 UPD:2018.12.15 欢迎大家爆踩标程- painting 我们考虑转化题意 ...
随机推荐
- RestTemplate-HTTP工具
RestTemplate 是由 Spring 提供的一个 HTTP 请求工具.在上文的案例中,开发者也可以不使用 RestTemplate ,使用 Java 自带的 HttpUrlConnection ...
- 从数据库中获取图片编号,然后通过request获取图片下载
import pandas as pd from pandas.core.dtypes.dtypes import register_extension_dtype from sqlalchemy i ...
- 如何在云服务器上安装vim(bash: vim :command not found)
1.apt-get update 2.apt-get install vim vim文件即可成功!
- Zalando Postgres Operator 快速上手
本指南旨在让您快速了解在本地 Kubernetes 环境中使用 Postgres Operator. 前提条件 由于 Postgres Operator 是为 Kubernetes (K8s) 框架设 ...
- gh-ost使用问题记录
因为 pt-osc 对数据库性能影响较大,且容易造成死锁问题,目前我们在线更改表结构都使用 gh-ost 工具进行修改,这里记录一下使用 gh-ost 过程中的问题,以作记录:首先先复习一下gh-os ...
- Python 一网打尽<排序算法>之从希尔排序算法的分治哲学开始
1. 前言 本文将介绍希尔排序.归并排序.基数排序(桶排序).堆排序. 在所有的排序算法中,冒泡.插入.选择属于相类似的排序算法,这类算法的共同点:通过不停地比较,再使用交换逻辑重新确定数据的位置. ...
- go 中 select 源码阅读
深入了解下 go 中的 select 前言 1.栗子一 2.栗子二 3.栗子三 看下源码实现 1.不存在 case 2.select 中仅存在一个 case 3.select 中存在两个 case,其 ...
- .NET Core(.NET6)中gRPC注册到Consul
一.简介 上一篇文章介绍了.NET Core 中使用gRPC,在微服务中,我们通常要把服务做成服务注册,服务发现的方式,那么这里来说一下gRPC是如何注册到Consul中的. Consul的安装这里就 ...
- 数据建模软件Chiner,颜值与实用性并存
目录 一.chiner介绍 二.值得关注的功能点 2.1. 兼容各种格式的数据建模文件 2.2. 支持多数据库.代码生成 2.3. 支持逻辑视图与物理视图设计 2.4. 自动生成数据库文档 三.总结 ...
- 聊聊buffer和cache的区别以及是什么?
buffer 众所周知,想把数据写入磁盘,肯定要先把数据文件读到内存中,当修改完这个文件时,不会立即写入磁盘,为了减少磁盘IO,提高性能,所有会留存一段时间再写入磁盘,这就是buffer cache ...