画画图可知,三点\(lca\)必有两相同,\(a,b,c\)距离为\(dis_a + dis_b + dis_c - dis_{lca(a,b)} - dis_{lca(b,c)} - dis_{lca(a,c)}\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause") #else #define D_e_Line ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 500007; struct Edge{
int nxt, pre, w;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v, int w){
e[++cntEdge] = (Edge){head[u], v, w}, head[u] = cntEdge;
} int dis[N];
int fa[N], son[N], siz[N], dep[N];
inline void DFS_First(int u, int father){
fa[u] = father, dep[u] = dep[father] + 1, siz[u] = 1;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == father) continue;
dis[v] = dis[u] + e[i].w;
DFS_First(v, u);
siz[u] += siz[v];
if(!son[u] || siz[v] > siz[son[u]]){
son[u] = v;
}
}
}
int dfn[N], dfnIdx, top[N];
inline void DFS_Second(int u, int ancester){
top[u] = ancester, dfn[u] = ++dfnIdx;
if(!son[u]) return;
DFS_Second(son[u], ancester);
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v != son[u] && v != fa[u]){
DFS_Second(v, v);
}
}
}
inline int LCA(int x, int y){
while(top[x] != top[y]){
if(dep[top[x]] < dep[top[y]]) Swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
} int main(){
int n, Ques;
io >> n >> Ques;
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v, 1);
add(v, u, 1);
} DFS_First(1, 0);
DFS_Second(1, 1); while(Ques--){
int a, b, c;
io >> a >> b >> c;
int A = LCA(a, b), B = LCA(b, c), C = LCA(a, c);
// int disA = dis[a] + dis[b] - (dis[A] << 1);
// int disB = dis[b] + dis[c] - (dis[B] << 1);
// int disC = dis[a] + dis[c] - (dis[C] << 1);
int pos;
if(A == B) pos = C;
else if(B == C) pos = A;
else pos = B;
printf("%d %d\n", pos, dis[a] + dis[b] + dis[c] - dis[A] - dis[B] - dis[C]);
} return 0;
}

BZOJ1787/Luogu4281: [Ahoi2008]Meet 紧急集合的更多相关文章

  1. 【BZOJ1787】[Ahoi2008]Meet 紧急集合 LCA

    [BZOJ1787][Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 ...

  2. LCA 【bzoj1787】[Ahoi2008]Meet 紧急集合

    LCA [bzoj1787][Ahoi2008]Meet 紧急集合 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1787 注意到边权为一 ...

  3. 【bzoj1787】[Ahoi2008]Meet 紧急集合

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2466  Solved: 1117[Submit] ...

  4. 【bzoj1787】[Ahoi2008]Meet 紧急集合 倍增LCA

    题目描述 输入 输出 样例输入 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 2 4 4 6 6 6 样例输出 5 2 2 5 4 1 6 0 题解 倍增LCA 首先有集合点 ...

  5. bzoj1787[Ahoi2008]Meet 紧急集合&bzoj1832[AHOI2008]聚会

    bzoj1787[Ahoi2008]Meet 紧急集合 bzoj1832[AHOI2008]聚会 题意: 给个树,每次给三个点,求与这三个点距离最小的点. 题解: 倍增求出两两之间的LCA后,比较容易 ...

  6. bzoj1787 [Ahoi2008]Meet 紧急集合

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 2272  Solved: 1029 [Submi ...

  7. BZOJ1787 [Ahoi2008]Meet 紧急集合 【LCA】

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 3578  Solved: 1635 [Submi ...

  8. 【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2259  Solved: 1023[Submit] ...

  9. bzoj 1787 [Ahoi2008]Meet 紧急集合(1832 [AHOI2008]聚会)

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1841  Solved: 857[Submit][ ...

随机推荐

  1. 【Unity Shader学习笔记】Unity基础纹理-单张纹理

    1 单张纹理 1.1 纹理 使用纹理映射(Texture Mapping)技术,我们把一张图片逐纹素(Texel)地控制模型的颜色. 美术人员建模时,会在建模软件中利用纹理展开技术把纹理映射坐标(Te ...

  2. T1创世纪(原创)

    创世纪 这是我的第一道原创题 题解: 这道题的核心算法是:加维度的最短路+贪心 状态:\(dis[i][j][t][a]\)表示在 \(t\) 时,到达 \((i,j)\) ,当前共造\(a\)只&q ...

  3. 专家PID控制仿真学习

    目录 专家控制 专家系统 专家控制 学习笔记,用于记录学习 资料:<智能控制>(第四版)--刘金琨 专家系统 一.专家系统的定义 专家系统是一类包含知识和推理的智能计算机程序,其内部包含某 ...

  4. zigbee技术数传电台在石油探井状态监测系统

    石油探井分布分散,数量众多,出现异常现象需及时处理.人工巡视耗时长.时效性差:有线传输存在布线繁琐.成本高.现场无移动网络覆盖等诸多缺点. 现需要一种支持大量接入.覆盖范围广.数据传输高效且有数据中心 ...

  5. Tensor的向量化

    向量化操作是指可以在同一时间进行批量地并行计算,例如矩阵运算,以达到更好效率的一种方式. 尽量使用向量化直接对Tensor操作,避免低效率的for循环对元素逐个操作.

  6. .Net Core 中使用工厂模式

    什么是工厂模式 工厂模式是最常用的设计模式之一,属于创建型模式. 有点: 解耦,可以把对象的创建和过程分开 减少代码量,易于维护 什么时候用? 当一个抽象类有多个实现的时候,需要多次实例化的时候,就要 ...

  7. 我大抵是卷上瘾了,横竖睡不着!竟让一个Bug,搞我两次!

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言:一个Bug 没想到一个Bug,竟然搞我两次! 我大抵是卷上瘾了,横竖都睡不着,坐起来 ...

  8. 安装gitlab客户端

    1. 下载客户端软件包 https://pan.baidu.com/disk/home#/category?type=6&vmode=list 安装顺序: Git-2.13.3-64-bit. ...

  9. zabbix通过invoke调用监控服务可用性

    1. 通过脚本判断线上服务是否可用 telnet 127.0.0.1 端口 #线上调用的是使用的dubbo端口 通过invoke 抓取返回的code值,脚本如下 #返回code:0则视为正常,返回其他 ...

  10. VisionPro · C# · 加载与保存取像工具

    VisionPro 项目程序设计,取像工具可被包含在工具包内被调用,一般,为了满足程序取像可以实现单次取像,循环取像,实时取像等多方面应用,会将取像工具独立打包. 加载代码: 1 using Syst ...