Luogu4084 [USACO17DEC]Barn Painting (树形DP)
数组越界那个RE+WA的姹紫嫣红的。。。
乘法原理求种类数,类似于没有上司的舞会。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 100007;
const int mod = 1000000007;
struct Edge{
int nxt, pre;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v){
e[++cntEdge] = (Edge){head[u], v}, head[u] = cntEdge;
}
int col[N];
long long f[N][3];
inline void DFS(int u, int fa){
if(col[u])
f[u][col[u] - 1] = 1;
else{
R(i,0,2)
f[u][i] = 1;
}
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == fa) continue;
DFS(v, u);
f[u][0] = f[u][0] * (f[v][1] + f[v][2]) % mod;
f[u][1] = f[u][1] * (f[v][0] + f[v][2]) % mod;
f[u][2] = f[u][2] * (f[v][0] + f[v][1]) % mod;
}
}
int main(){
//FileOpen();
int n, K;
io >> n >> K;
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
}
R(i,1,K){
int x, nodeColor;
io >> x >> nodeColor;
col[x] = nodeColor;
}
DFS(1, 0);
printf("%lld", ((f[1][0] + f[1][1] + f[1][2]) % mod + mod) % mod);
return 0;
}

Luogu4084 [USACO17DEC]Barn Painting (树形DP)的更多相关文章
- [USACO17DEC]Barn Painting (树形$dp$)
题目链接 Solution 比较简单的树形 \(dp\) . \(f[i][j]\) 代表 \(i\) 为根的子树 ,\(i\) 涂 \(j\) 号颜色的方案数. 转移很显然 : \[f[i][1]= ...
- [USACO17DEC] Barn Painting - 树形dp
设\(f[i][j]\)为\(i\)子树,当\(i\)为\(j\)时的方案数 #include <bits/stdc++.h> using namespace std; #define i ...
- Educational Codeforces Round 67 E.Tree Painting (树形dp)
题目链接 题意:给你一棵无根树,每次你可以选择一个点从白点变成黑点(除第一个点外别的点都要和黑点相邻),变成黑点后可以获得一个权值(白点组成连通块的大小) 问怎么使权值最大 思路:首先,一但根确定了, ...
- [USACO17DEC] Barn Painting
题目描述 Farmer John has a large farm with NN barns (1 \le N \le 10^51≤N≤105 ), some of which are alread ...
- [学习笔记]树形dp
最近几天学了一下树形\(dp\) 其实早就学过了 来提高一下打开树形\(dp\)的姿势. 1.没有上司的晚会 我的人生第一道树形\(dp\),其实就是两种情况: \(dp[i][1]\)表示第i个人来 ...
- [USACO2002][poj1947]Rebuilding Roads(树形dp)
Rebuilding RoadsTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 8589 Accepted: 3854Descrip ...
- poj2378 树形DP
C - 树形dp Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:65536KB 64bit ...
- POJ 1947 Rebuilding Road(树形DP)
Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...
- 树形dp(poj 1947 Rebuilding Roads )
题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...
随机推荐
- Navicat破解激活流程
Navicat Navicat Premium 是一套数据库开发工具,让你从单一应用程序中同时连接 MySQL.MariaDB.MongoDB.SQL Server.Oracle.Postg ...
- vscode的一些优化设置
@ 目录 编辑代码区的字体设置 控制台字体设置 设置文件自动保存 自动猜测文件编码,防止乱码 关闭vscode的受限模式 取消每一次打开vscode都默认打开上次编辑的文件 编辑代码区的字体设置 控制 ...
- Java编码安全
目录 Java编码安全 数据校验 规则1.1:校验跨信任边界传递的不可信数据 规则1.2:禁止直接使用不可信数据来拼接SQL语句 规则1.4:禁止直接使用不可信数据来记录数据 规则1.6:验证路径前将 ...
- 快速选择 第k个数
快速选择 第k个数 题目描述 给定一个序列,求第k小的数 算法思想 利用快速排序思想,算法复杂度能达到O(n)步骤如下: 1.找到排序分界点x,这里选择区间最左值 2.排序,让左边的值都小于x,右边都 ...
- camunda流程引擎概念术语
前言 本文重点介绍开源流程引擎camunda的核心概念,这些概念同样适用于JBMP.Activiti.Flowable流程引擎,了解这些基本概念和原理,使用流程引擎API将更得心应手. 一.Proce ...
- 论文阅读 Real-Time Streaming Graph Embedding Through Local Actions 11
9 Real-Time Streaming Graph Embedding Through Local Actions 11 link:https://scholar.google.com.sg/sc ...
- flink-执行模式
flink的执行模式 flink既能处理离线数据,也能处理实时数据,在1.12.0版本以前,批数据返回的数据集合是dataSet,对应一套dataSet的api,从1.12.0版本以后,flink实现 ...
- 开始讨论离散型随机变量吧!《考研概率论学习之我见》 -by zobol
上一文中,笔者给出了随机变量的基本定义:一个可测映射,从结果空间到实数集,我们的目的是为了引入函数这个数学工具到考研概率论中,但是我们在现实中面对的一些事情结果,映射而成的随机变量和其对应的概率值,并 ...
- SpringBoot之缓存
一.准备工作 首先整合使用Spring整合MyBatis. 可参阅:SpringBoot整合MyBatis SpringBoot整合MyBatis完后后,我们需要在pom.xml中添加缓存相关的依赖. ...
- bat-注册表
注册表 注册表就像于是配置文件 linux下一切皆文件,windows下一切皆注册表 注册表(各种配置文件:系统设置.用户设置.软件的配置) HKEY_CLASSES_ROOT 超级管理员.系 ...