《Ranked List Loss for Deep Metric Learning》CVPR 2019
Motivation:
深度度量学习的目标是学习一个嵌入空间来从数据点中捕捉语义信息。现有的成对或者三元组方法随着模型迭代过程会出现大量的平凡组导致收敛缓慢。针对这个问题,一些基于排序结构的损失取得了不错的结果,本文主要是针对排序loss存在的两个不足做的改进。
- 不足一:给定一个query,只利用了小部分的数据点来构建相似度结构,导致一些有用信息被忽略。本文给出的解决方案是把样本划分为正例集和负例集,目标是使得query离正例集比负例集近一个间隔。
- 不足二:此前方法都是在嵌入空间尽可能推进正样本的距离忽略了类内差异,作者使用一个超参来保留类内分布。

作者先是回顾了目前存在的一些loss, 从上图可以看到,ranked list loss也就是本文提出的方法,在训练中充分利用了输入样本信息。
本文的想法是把正例样本与负例样本以$m$隔开,类内样本允许存在$\alpha-m$的分布差异,如下图所示:

成对约束:
其基于成对损失,上图可以表示为:$L_{\mathrm{m}}\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; f\right)=\left(1-y_{i j}\right)\left[\alpha-d_{i j}\right]_{+}+y_{i j}\left[d_{i j}-(\alpha-m)\right]_{+}$。其中${x}_{i}$为query,$d_{i j}=\left\|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right\|_{2}$为样本间欧式距离,当$y_{i}=y_{j}$时,$y_{i j}=1$,反之为0。
对于每个query $\mathbf{x}_{i}^{c}$,我们对gallery使用距离排序得到列表,其中存在$N_{c}-1$个正例点与$\sum_{k \neq c} N_{k}$个负例点。可以分别表示为$\mathbf{P}_{c, i}=\left\{\mathbf{x}_{j}^{c} | j \neq i\right\},\left|\mathbf{P}_{c, i}\right|=N_{c}-1$与$\mathbf{N}_{c, i}=\left\{\mathbf{x}_{j}^{k} | k \neq c\right\},\left|\mathbf{N}_{c, i}\right|=\sum_{k \neq c} N_{k}$。
难样本挖掘:
难样本挖掘因为收敛速度快,性能好被广泛使用,所谓难样本就是那些违反成对约束,loss值不为0的点。没有使用难样本挖掘在梯度融合时,这些信息量比较大的样本的贡献将被那些梯度为0的样本对削弱。所以我们先找出有贡献的样本。也就是:$\mathbf{P}_{c, i}^{*}=\left\{\mathbf{x}_{j}^{c} | j \neq i, d_{i j}>(\alpha-m)\right\}$与$\mathbf{N}_{c, i}^{*}=\left\{\mathbf{x}_{j}^{k} | k \neq c, d_{i j}<\alpha\right\}$。
基于损失的负样本挖掘:
对于每个query $\mathbf{x}_{i}^{c}$,存在大量困难负样本,它们具有不同的损失值。为了更好的利用它们,作者提出基于损失值来加权负样本,也就是每个负样本违反约束的程度。加权策略可以公式化为:
$w_{i j}=\exp \left(T \cdot\left(\alpha-d_{i j}\right)\right), \mathbf{x}_{j}^{k} \in \mathbf{N}_{c, i}^{*}$
作者注意到前面成对损失相对每个嵌入的梯度都是1.也就是:
$\left\|\frac{\partial L_{\mathrm{m}}\left(\mathbf{x}_{i}, \mathbf{x}_{j} ; f\right)}{\partial f\left(\mathbf{x}_{j}\right)}\right\|_{2}=\left\|\frac{f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)}{\left\|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right\|_{2}}\right\|_{2}=1$
相对而言,作者提出来的则会被$w_{i j}$加权。$T$是一个温度因子,当T等于0时,就会退化为无困难负样本挖掘,当T趋近于无穷大,就会变成最困难负样本挖掘。
优化目标:
对于每个query $\mathbf{x}_{i}^{c}$,优化的目标是让他离正例集合$\mathbf{P}_{c, i}$比负例集合$\mathbf{N}_{c, i}$的距离近$m$。同时,强迫所有的负样本离query的距离大于$\alpha$。这样一来,其实所有的正例也被约束在离query距离$\alpha-m$的范围内。对于正例集的约束如下:
$L_{\mathrm{P}}\left(\mathbf{x}_{i}^{c} ; f\right)=\frac{1}{\left|\mathbf{P}_{c, i}^{*}\right|} \sum_{\mathbf{x}_{j}^{c} \in \mathbf{P}_{c, i}^{*}} L_{\mathrm{m}}\left(\mathbf{x}_{i}^{c}, \mathbf{x}_{j}^{c} ; f\right)$
可以看到作者没有对正例进行加权,这是因为正样本很少。对困难负例的约束为:
$L_{\mathrm{N}}\left(\mathrm{x}_{i}^{c} ; f\right)=\sum_{\mathbf{x}_{j}^{k} \in\left[\mathrm{N}_{c, i}^{*}\right]} \frac{w_{i j}}{\sum_{\mathbf{x}_{j}^{k} \in\left[\mathrm{N}_{c, i}^{*}\right]}^{w_{i j}} L_{\mathrm{m}}\left(\mathbf{x}_{i}^{c}, \mathbf{x}_{j}^{k} ; f\right)}$
总体的损失便是两者的相加:$L_{\mathrm{RLL}}\left(\mathbf{x}_{i}^{c} ; f\right)=L_{\mathrm{P}}\left(\mathbf{x}_{i}^{c} ; f\right)+\lambda L_{\mathrm{N}}\left(\mathbf{x}_{i}^{c} ; f\right)$。在$\mathbf{x}_{i}^{c}$的列表中,我们把其他样本的特征当作固定值,只有$f(\mathbf{x}_{i}^{c})$会通过其他样本影响的加权和进行更新。
学习过程:

首先同样通过$P*K$的采样方式,也就是每批由$P$个人物,每个人物的$K$张图片组成。然后每张图片都被轮流当作query,剩下的就被当成gallery。可以公式化为:
$L_{\mathrm{RLL}}(\mathbf{X} ; f)=\frac{1}{N} \sum_{\forall c, \forall i} L_{\mathrm{RLL}}\left(\mathbf{x}_{i}^{c} ; f\right)$
其中$N$为批大小,算法流程如下:

《Ranked List Loss for Deep Metric Learning》CVPR 2019的更多相关文章
- 论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding
Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 traini ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
- 论文解读(USIB)《Towards Explanation for Unsupervised Graph-Level Representation Learning》
论文信息 论文标题:Towards Explanation for Unsupervised Graph-Level Representation Learning论文作者:Qinghua Zheng ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week2 Neural Networks Basics课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 《Deep Learning》(深度学习)中文版PDF免费下载
<Deep Learning>(深度学习)中文版PDF免费下载 "深度学习"经典著作<Deep Learning>中文版pdf免费下载. <Deep ...
- 《Deep Learning》(深度学习)中文版 开发下载
<Deep Learning>(深度学习)中文版开放下载 <Deep Learning>(深度学习)是一本皆在帮助学生和从业人员进入机器学习领域的教科书,以开源的形式免费在 ...
- 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...
随机推荐
- VOC数据集可视化
from gettext import find import os from xml.etree import ElementTree as ET import cv2 def drawBoxOnV ...
- linux脚本执行jar包运行
以下为linux下运行jar包的脚本(只需替换jar包名称): #!/bin/bash #这里可替换为你自己的执行程序,其他代码无需更改 APP_NAME=ruoyi-admin.jar cd `di ...
- python数据处理-matplotlib入门(4)-条形图和直方图
摘要:先介绍条形图直方图,然后用随机数生成一系列数据,保存到列表中,最后统计出相关随机数据的概率并展示 前述介绍了由点进行划线形成的拆线图和散点形成的曲线图,连点成线,主要用到了matplotlib中 ...
- 使用CreateThreadPool创建线程池
使用Windows API函数来创建线程池,可以极大的方便了自己编写线程池的繁琐步骤. 使用CreateThreadPool来创建一个线程池,需要在创建完成后,初始化线程池的状态,并且在不需要的时候清 ...
- openstack之Designate组件,入门级安装(快速)
@ 目录 前言 架构 前提准备 创建 DNS 服务 API 端点 安装和配置组件 验证操作 前言 Designate 是一个开源 DNS 即服务实施,是用于运行云的 OpenStack 服务生态系统的 ...
- git提交代码到GitHub操作-简易版(后续完善)
一.git上传代码到GitHub 1.远程仓库GitHub创建好一个新仓库注意仓库名 2.本地建一个目录写代码,目录名与仓库命名一致 3.在目录下右键 git Bash here 打开git终端命令行 ...
- CRM项目的整理---第一篇
CRM:cunstomer relationship management 客户管理系统 1.项目的使用者:销售 班主任 讲师 助教 2.项目的需求分析 2.1.注册 2.2.登录 2.3 ...
- 为什么 io 包一般以 byte 数组做为处理单位?
为什么 io 包一般以 byte 数组做为处理单位? 本文写于 2021 年 9 月 7 日 编程语言中时常会出现 []byte 作为类型的操作.特别是在网络传输或是 io 操作中,例如 socket ...
- JS 的立即执行函数
JS 的立即执行函数 本文写于 2019 年 12 月 7 日 其实 ES6 之后有了之后,很多之前的用法都没必要了,立即执行函数就是其一. 今天看到一道面试题: 请「用自己的语言」简述 立即执行函数 ...
- PowerShell 笔记 - 基础篇
Powershell 笔记 基础 查看powershell版本 PS C:\Users\chino> $PSVersionTable Name Value ---- ----- PSVersio ...