[SPOJ7258]Lexicographical Substring Search
[SPOJ7258]Lexicographical Substring Search
试题描述
Little Daniel loves to play with strings! He always finds different ways to have fun with strings! Knowing that, his friend Kinan decided to test his skills so he gave him a string S and asked him Q questions of the form:
If all distinct substrings of string S were sorted lexicographically, which one will be the K-th smallest?
After knowing the huge number of questions Kinan will ask, Daniel figured out that he can't do this alone. Daniel, of course, knows your exceptional programming skills, so he asked you to write him a program which given S will answer Kinan's questions.
Example:
S = "aaa" (without quotes)
substrings of S are "a" , "a" , "a" , "aa" , "aa" , "aaa". The sorted list of substrings will be:
"a", "aa", "aaa".
输入
输出
Output consists of Q lines, the i-th contains a string which is the answer to the i-th asked question.
输入示例
aaa
输出示例
aa
aaa
题解
这题其实就是这道题的一个子问题。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 90010 char S[maxn];
int n, rank[maxn], height[maxn], sa[maxn], Ws[maxn]; bool cmp(int* a, int p1, int p2, int l) {
if(p1 + l > n && p2 + l > n) return a[p1] == a[p2];
if(p1 + l > n || p2 + l > n) return 0;
return a[p1] == a[p2] && a[p1+l] == a[p2+l];
}
void ssort() {
int *x = rank, *y = height;
int m = 0;
for(int i = 1; i <= n; i++) Ws[x[i] = S[i]]++, m = max(m, x[i]);
for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
for(int i = n; i; i--) sa[Ws[x[i]]--] = i;
for(int j = 1, pos = 0; pos < n; j <<= 1, m = pos) {
pos = 0;
for(int i = n - j + 1; i <= n; i++) y[++pos] = i;
for(int i = 1; i <= n; i++) if(sa[i] > j) y[++pos] = sa[i] - j;
for(int i = 1; i <= m; i++) Ws[i] = 0;
for(int i = 1; i <= n; i++) Ws[x[i]]++;
for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
for(int i = n; i; i--) sa[Ws[x[y[i]]]--] = y[i];
swap(x, y); pos = 1; x[sa[1]] = 1;
for(int i = 2; i <= n; i++) x[sa[i]] = cmp(y, sa[i], sa[i-1], j) ? pos : ++pos;
}
return ;
}
void calch() {
for(int i = 1; i <= n; i++) rank[sa[i]] = i;
for(int i = 1, j, k = 0; i <= n; height[rank[i++]] = k)
for(k ? k-- : 0, j = sa[rank[i]-1]; S[j+k] == S[i+k]; k++);
return ;
} int en[maxn]; int main() {
scanf("%s", S + 1);
n = strlen(S + 1); ssort();
calch();
for(int i = 1; i <= n; i++) en[i] = n - sa[i] + 1 - height[i];
for(int i = 1; i <= n; i++) en[i] += en[i-1];
int q = read();
while(q--) {
int k = read(), p = lower_bound(en + 1, en + n + 1, k) - en;
int l = sa[p], r = n - (en[p] - k);
for(int i = l; i <= r; i++) putchar(S[i]); putchar('\n');
} return 0;
}
这道题用后缀自动机也是可以滴。对于每个节点 i 我们维护一发 f(i) 表示状态 i 之后总共有多少种填法,然后我们每一位枚举填哪个字母,看后续状态数是否 ≥ k。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 180010
#define maxa 26 char S[maxn];
int n; int rt, last, ToT, ch[maxn][maxa], par[maxn], Max[maxn], f[maxn];
void extend(int x) {
int p = last, np = ++ToT; Max[np] = Max[p] + 1; f[np] = 1; last = np;
while(p && !ch[p][x]) ch[p][x] = np, p = par[p];
if(!p){ par[np] = rt; return ; }
int q = ch[p][x];
if(Max[q] == Max[p] + 1){ par[np] = q; return ; }
int nq = ++ToT; Max[nq] = Max[p] + 1; f[nq] = 1;
memcpy(ch[nq], ch[q], sizeof(ch[q]));
par[nq] = par[q];
par[q] = par[np] = nq;
while(p && ch[p][x] == q) ch[p][x] = nq, p = par[p];
return ;
}
int sa[maxn], Ws[maxn];
void build() {
for(int i = 1; i <= ToT; i++) Ws[n-Max[i]]++;
for(int i = 1; i <= n; i++) Ws[i] += Ws[i-1];
for(int i = ToT; i; i--) sa[Ws[n-Max[i]]--] = i;
for(int i = 1; i <= ToT; i++)
for(int c = 0; c < maxa; c++) f[sa[i]] += f[ch[sa[i]][c]];
return ;
} int main() {
scanf("%s", S); n = strlen(S);
rt = last = ToT = 1;
for(int i = 0; i < n; i++) extend(S[i] - 'a');
build();
// for(int i = 1; i <= ToT; i++) printf("%d%c", f[i], i < ToT ? ' ' : '\n'); int q = read();
while(q--) {
int k = read(), p = rt;
while(k)
for(int c = 0; c < maxa; c++) if(ch[p][c])
if(f[ch[p][c]] >= k) {
putchar(c + 'a'); k--; p = ch[p][c]; break;
}
else k -= f[ch[p][c]];
putchar('\n');
} return 0;
}
[SPOJ7258]Lexicographical Substring Search的更多相关文章
- 2018.12.22 spoj7258 Lexicographical Substring Search(后缀自动机)
传送门 samsamsam基础题. 题意简述:给出一个串,询问第kkk大的本质不同的串. 然而这就是弦论的简化版. 我们把samsamsam建出来然后贪心选择就行了. 代码: #include< ...
- spoj 7258 Lexicographical Substring Search (后缀自动机)
spoj 7258 Lexicographical Substring Search (后缀自动机) 题意:给出一个字符串,长度为90000.询问q次,每次回答一个k,求字典序第k小的子串. 解题思路 ...
- SPOJ SUBLEX 7258. Lexicographical Substring Search
看起来像是普通的SAM+dfs...但SPOJ太慢了......倒腾了一个晚上不是WA 就是RE ..... 最后换SA写了...... Lexicographical Substring Searc ...
- SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组
SUBLEX - Lexicographical Substring Search Little Daniel loves to play with strings! He always finds ...
- Lexicographical Substring Search SPOJ - SUBLEX (后缀数组)
Lexicographical Substrings Search \[ Time Limit: 149 ms \quad Memory Limit: 1572864 kB \] 题意 给出一个字符串 ...
- Lexicographical Substring Search SPOJ - SUBLEX (后缀自动机)
Lexicographical Substrings Search \[ Time Limit: 149 ms \quad Memory Limit: 1572864 kB \] 题意 给出一个字符串 ...
- SPOJ7258 SUBLEX - Lexicographical Substring Search(后缀自动机)
Little Daniel loves to play with strings! He always finds different ways to have fun with strings! K ...
- SPOJ7258 SUBLEX - Lexicographical Substring Search
传送门[洛谷] 心态崩了我有妹子 靠 我写的记忆化搜索 莫名WA了 然后心态崩了 当我正要改成bfs排序的时候 我灵光一动 md我写的i=0;i<25;i++??? 然后 改过来就A掉了T^T ...
- 【SPOJ 7258】Lexicographical Substring Search
http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...
随机推荐
- 暴力/进制转换 Codeforces Round #308 (Div. 2) C. Vanya and Scales
题目传送门 /* 题意:问是否能用质量为w^0,w^1,...,w^100的砝码各1个称出重量m,砝码放左边或在右边 暴力/进制转换:假设可以称出,用w进制表示,每一位是0,1,w-1.w-1表示砝码 ...
- AJPFX关于增强for的概述和使用(foreach)
增强for的概述和使用(foreach)1.增强for的概述和使用(foreach) 格式: for(数组或者Collection集合中元素 ...
- 使用一个CSS Class去给标签定义Style
使用一个CSS Class去给标签定义Style 类是可重用的样式,可以添加到HTML元素. 下面是一个CSS类声明的例子: <style> .blue-text { colo ...
- 《基于Node.js实现简易聊天室系列之引言》
简述:这个聊天室是基于Node.js实现的,完成了基本的实时通信功能.在此之前,对node.js和mongodb一无所知,但是通过翻阅博客,自己动手基本达到了预期的效果.技术,不应该是闭门造车,而是学 ...
- C/C++ 函数模板、全局变量、register、存储周期
1.函数声明时可以简写,如: int max(int,int): 2.函数模板: 格式: template <typename haha>或template <class haha& ...
- nutz配置druid监控
druid 提供了一个web端的监控页面, 搭建起来不算麻烦, 建议添加. 打开web.xml, 在nutz的filter之前, 加入Web监控的配置 <filter> <filte ...
- Java HTTP 组件库选型看这篇就够了
最近项目需要使用 Java 重度调用 HTTP API 接口,于是想着封装一个团队公用的 HTTP client lib. 这个库需要支持以下特性: 连接池管理,包括连接创建和超时.空闲连接数控制.每 ...
- react router activeclassName 没有显示
import React, {Component} from 'react' import {NavLink, Switch, Route, Redirect} from 'react-router- ...
- 360浏览器 收藏夹 ico 缓存 目录
C:\Users\Administrator\AppData\Roaming\360se6\apps\data\users\default\data\ico
- PHP 中 include() 与 require() 的区别说明
引用文件的方法有两种:require 及 include.两种方式提供不同的使用弹性. require 的使用方法如 require("MyRequireFile.php"); . ...