Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.A bracelet is a ring-like sequence of s beads each of which can have one of cdistinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

给定颜色种数和环上的珠子总数,问有多少种染色方案(通过旋转和翻转相同的算同一种)。

Input

Every line of the input defines a test case and contains two integers:

the number of available colors c followed by the length of the bracelets s.

Input is terminated by c = s = 0.

Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs <= 32,

i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets.

The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1

2 1

2 2

5 1

2 5

2 6

6 2

0 0

Sample Output

1

2

3

5

8

13

21


polya置换的裸题了,考虑旋转,我们枚举所有可能的旋转方式,所以得到的循环节个数为gcd(i,n),因此答案为\(\sum\limits_{i=1}^{n} c^{gcd(n,i)}\)

再考虑一下翻转,我们分奇数和偶数进行讨论,如果是奇数,那么不论如何找对称轴,都必定会形成\(\frac{n}{2}+1\)个循环节,再乘上\(n\)即可;如果是偶数,那么就会有\(\frac{n}{2}\)和\(\frac{n-2}{2}+2\)两种循环节情况,然后每种情况各占\(\frac{n}{2}\)条对称轴

最后把答案除一下置换总数\(2*n\)即可

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=a*a) if (b&1) res=res*a;
return res;
}
int main(){
while (true){
int m=read(),n=read(),ans=0;
if (!n&&!m) break;
for (int i=1;i<=n;i++) ans+=mlt(m,gcd(n,i));
if (n&1) ans+=n*mlt(m,n/2+1);
else ans+=(mlt(m,n/2+1)+mlt(m,n/2))*(n>>1);
printf("%d\n",ans/(2*n));
}
return 0;
}

[ZOJ1961]Let it Bead的更多相关文章

  1. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  2. poj 2049 Let it Bead(polya模板)

      Description Cannery Row percent of the target audience insists that the bracelets be unique. (Just ...

  3. poj2409 Let it Bead

                                                                      Let it Bead Time Limit: 1000MS   M ...

  4. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  5. POJ 2409 Let it Bead(polya裸题)

    题目传送:http://poj.org/problem?id=2409 Description "Let it Bead" company is located upstairs ...

  6. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  7. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  8. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  9. Median Weight Bead(最短路—floyed传递闭包)

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

随机推荐

  1. javax/servlet/ServletContext : Unsupported major.minor version 51.0

    原文:http://blog.csdn.net/mlin_123/article/details/50738532 解决:将版本从 3.1.0 改为 3.0.1 <!-- 添加servlet A ...

  2. 我和 HelloGitHub

    我? 我是一个本科学历.无大厂经历,普通的 Python 程序员. 虽然是计算机专业,但是大学玩了四年(Dota)后,发现自己无一技能傍身,要饿死啦!偶然间接触了 Python 这门编程语言,发现编程 ...

  3. 关于对FLASH开发,starling、starling feathers、starling MVC框架的理解

    说在前头:楼主之前没有不论什么flash开发经验,仅仅是从一次尝试中总结自己的理解和经验而已.假设有写的不正确的地方,欢迎大家指正. 前一段时间尝试想用flash(as3)又一次制作一下之前做的一个游 ...

  4. poj1904 二分图匹配+强连通分量

    http://poj.org/problem?id=1904 Description Once upon a time there lived a king and he had N sons. An ...

  5. 【拆分版】Docker-compose构建Zookeeper集群管理Kafka集群

    写在前边 在搭建Logstash多节点之前,想到就算先搭好Logstash启动会因为日志无法连接到Kafka Brokers而无限重试,所以这里先构建下Zookeeper集群管理的Kafka集群. 众 ...

  6. pip 安装速度慢解决办法

    https://blog.csdn.net/liujingclan/article/details/50176597 https://blog.csdn.net/rytyy/article/detai ...

  7. oracle 12c 13姨

    搞了一下oracle 12c.有些体会还是先记下来. 12c搞搞新意思,弄了个CDB(容器数据库,可不是商务中心CBD哟)和PDB(可插拔数据库).PDB插在CDB里. 简单而言,CDB就是一个数据库 ...

  8. mysql 5.5安装不对容易出现问题

    按照正常步骤安装完了mysql 5.5之后,再运行一下bin目录中的mysqlinstanceconfig.exe,重置一下密码!!!! 重置密码的地方:modify security setting ...

  9. shell 读写远程数据库

    http://www.cnblogs.com/wangkangluo1/archive/2012/04/27/2472898.html 利用Shell脚本实现远程MySQL自动查询 目的:对定时任务对 ...

  10. 两大数相乘 -- javascript 实现

    (function (){ var addLarge = function(n1,n2){ var carry = 0; var ret = ""; n1=n1.toString( ...