Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.A bracelet is a ring-like sequence of s beads each of which can have one of cdistinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

给定颜色种数和环上的珠子总数,问有多少种染色方案(通过旋转和翻转相同的算同一种)。

Input

Every line of the input defines a test case and contains two integers:

the number of available colors c followed by the length of the bracelets s.

Input is terminated by c = s = 0.

Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs <= 32,

i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets.

The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1

2 1

2 2

5 1

2 5

2 6

6 2

0 0

Sample Output

1

2

3

5

8

13

21


polya置换的裸题了,考虑旋转,我们枚举所有可能的旋转方式,所以得到的循环节个数为gcd(i,n),因此答案为\(\sum\limits_{i=1}^{n} c^{gcd(n,i)}\)

再考虑一下翻转,我们分奇数和偶数进行讨论,如果是奇数,那么不论如何找对称轴,都必定会形成\(\frac{n}{2}+1\)个循环节,再乘上\(n\)即可;如果是偶数,那么就会有\(\frac{n}{2}\)和\(\frac{n-2}{2}+2\)两种循环节情况,然后每种情况各占\(\frac{n}{2}\)条对称轴

最后把答案除一下置换总数\(2*n\)即可

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=a*a) if (b&1) res=res*a;
return res;
}
int main(){
while (true){
int m=read(),n=read(),ans=0;
if (!n&&!m) break;
for (int i=1;i<=n;i++) ans+=mlt(m,gcd(n,i));
if (n&1) ans+=n*mlt(m,n/2+1);
else ans+=(mlt(m,n/2+1)+mlt(m,n/2))*(n>>1);
printf("%d\n",ans/(2*n));
}
return 0;
}

[ZOJ1961]Let it Bead的更多相关文章

  1. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  2. poj 2049 Let it Bead(polya模板)

      Description Cannery Row percent of the target audience insists that the bracelets be unique. (Just ...

  3. poj2409 Let it Bead

                                                                      Let it Bead Time Limit: 1000MS   M ...

  4. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  5. POJ 2409 Let it Bead(polya裸题)

    题目传送:http://poj.org/problem?id=2409 Description "Let it Bead" company is located upstairs ...

  6. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  7. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  8. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  9. Median Weight Bead(最短路—floyed传递闭包)

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

随机推荐

  1. 框架-Jquerychange事件数值计算

    //优惠率计算优惠价            $("body").on("change", "#Rate", function() {     ...

  2. ssh 执行多条命令包含awk的用法

    格式:ssh user@ip command 单条命令:ssh user@ip command1 多条命令:ssh user@ip "command1;command2" 不加双引 ...

  3. Input系统—ANR原理分析(转)

    一. 概述 当input事件处理得慢就会触发ANR,那ANR内部原理是什么,哪些场景会产生ANR呢. “工欲善其事必先利其器”,为了理解input ANR原理,前面几篇文章疏通了整个input框架的处 ...

  4. 大数据处理之道 (htmlparser获取数据&lt;一&gt;)

    一:简单介绍 (1)HTML Parser是一个用于解析Html的Java的库.可採用线性或嵌套两种方式.主要用于网页的转换或提取,他有一些特性:过滤器filter,遍历器visitors,通常的标签 ...

  5. my-small.cnf my-medium.cnf my-large.cnf my-huge.cnf

    my-small.cnf my-medium.cnf my-large.cnf my-huge.cnf 是 MySQL 默认的几个配置文件.针对不同配置的服务器可以使用不同的配置文件,将你需要的那一个 ...

  6. 本人会linux系统的各种版本的安装,近期发教程

    小弟虽然刚刚踏入职场,可是咱大学也不是打酱油过的啊,研究过各种版本系统的安装,也都均已经实践,勿喷,有问题 咱们可以相互探讨!

  7. SpringMVC_配置和注解--跟海涛学SpringMVC(和自己在项目中的实际使用的对比)

    Spring2.5 之前,我们都是通过实现Controller 接口或其实现来定义我们的处理器类,就像前面介绍的 这里介绍的是Spring3.1的新特性,虽然现在我用的是spring4.2.6,不过基 ...

  8. linux epoll的实现原理

    1 linux的poll操作 linux文件的poll操作有两个主要目的:第一,主动查看该文件上是否有读写事件:第二,提供操作waitqueue的接口给epoll等上层接口使用,比如epoll可以通过 ...

  9. 设计模式-(10)观察者模式 (swift版)

    一,概念 观察者(Observer)模式又名发布-订阅(Publish/Subscribe)模式.GOF给观察者模式如下定义:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它 ...

  10. (转载)synchronized代码块

    原文:http://blog.csdn.net/luoweifu/article/details/46613015 作者:luoweifu 转载请标名出处 <编程思想之多线程与多进程(1)——以 ...