[luogu4127 AHOI2009] 同类分布 (数位dp)
Solution
裸数位dp,空间存不下只能枚举数字具体是什么
注意memset最好为-1,不要是0,有很多状态答案为0
Code
//By Menteur_Hxy
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Re register
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin)),p1==p2?EOF:*p1++)
using namespace std;
typedef long long LL;
char buf[1<<21],*p1,*p2;
inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
LL MOD;
LL dp[20][200][200],bit[20];
LL dfs(LL pos,LL sum,LL mod,LL lim) {
if(!pos) return (sum==MOD&&mod==0);
if(!lim&&~dp[pos][sum][mod]) return dp[pos][sum][mod];
int up=lim?bit[pos]:9; LL res=0;
Fo(i,0,up) res+=dfs(pos-1,sum+i,(mod*10+i)%MOD,lim&&i==bit[pos]);
if(!lim) dp[pos][sum][mod]=res;
return res;
}
LL sol(LL x) {
LL len=0,res=0;
while(x) bit[++len]=x%10,x/=10;
for(MOD=1;MOD<=len*9;MOD++) {
memset(dp,-1,sizeof(dp));
res+=dfs(len,0,0,1);
}
return res;
}
int main() {
LL l=read(),r=read();
printf("%lld",sol(r)-sol(l-1));
return 0;
}
[luogu4127 AHOI2009] 同类分布 (数位dp)的更多相关文章
- [BZOJ1799][AHOI2009]同类分布(数位DP)
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MBSubmit: 1635 Solved: 728[Submit][S ...
- bzoj 1799: [Ahoi2009]self 同类分布 数位dp
1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...
- BZOJ1799 [Ahoi2009]self 同类分布[数位DP]
求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...
- BZOJ1799 self 同类分布 数位dp
BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...
- BZOJ 1799 同类分布(数位DP)
给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...
- bzoj1799同类分布——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...
- 【BZOJ1799】[AHOI2009]同类分布(动态规划)
[BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...
- 洛谷 P4127 [AHOI2009]同类分布 解题报告
P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...
- P4127 [AHOI2009]同类分布
P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下 yuan%sum==0 不就好啦??? ...
随机推荐
- win7(windows 7)系统下安装SQL2005(SQL Server 2005)图文教程( Win7 SQL Server2005 安装教程)
win7(windows 7)系统下安装SQL2005(SQL Server 2005)图文教程 由于工作需要,今天要在电脑上安装SQL Server 2005.以往的项目都是使用Oracle,MS的 ...
- 【Silverlight】Bing Maps学习系列(一):开发前的准备工作
[Silverlight]Bing Maps学习系列(一):开发前的准备工作 微软推出的Bing Maps地图引擎,对外开放了Silverlight和Ajax两种客户端API,同时微软针对全球地图还推 ...
- 基于Jquery插件Uploadify实现实时显示进度条上传图片
网址:http://www.jb51.net/article/83811.htm 这篇文章主要介绍了基于Jquery插件Uploadify实现实时显示进度条上传图片的相关资料,感兴趣的小伙伴们 ...
- POJ2187 Beauty Contest (旋转卡壳算法 求直径)
POJ2187 旋转卡壳算法如图 证明:对于直径AB 必然有某一时刻 A和B同时被卡住 所以旋转卡壳卡住的点集中必然存在直径 而卡壳过程显然是O(n)的 故可在O(n)时间内求出直径 凸包具有良好的性 ...
- Real-Time Compressive Tracking,实时压缩感知跟踪算法解读
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...
- gitlab smtp设置
QQ exmail gitlab_rails['smtp_enable'] = true gitlab_rails['smtp_address'] = "smtp.exmail.qq.com ...
- 揭秘Node.js深受欢迎的原因
揭秘Node.js深受欢迎的原因 http://www.php100.com/html/dujia/2014/1127/7922.html
- Spring MVC的学习笔记
基于注解形式配置Spring MVC 一.注册并初始化DispatcherServlet,由Servlet容器自动检测并启动 注解形式 public class MyWebApplicationIni ...
- bzoj 1704: [Usaco2007 Mar]Face The Right Way 自动转身机【贪心+差分】
首先O(n^3)的贪心很好想,就是枚举k然后从前往后扫,扫到反就翻转区间 然后考虑优化掉翻转区间维,就是搞成差分的形式,在翻转区间的尾部打上标记,再用一个变量维护当前的翻转次数,加到当前状态上来判断是 ...
- bzoj 1782: [Usaco2010 Feb]slowdown 慢慢游【dfs序+线段树】
考虑每头牛到达之后的影响,u到达之后,从1到其子树内的点需要放慢的都多了一个,p为u子树内点的牛ans会加1 用线段树维护dfs序,每次修改子树区间,答案直接单点查询p即可 #include<i ...