bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 5907 Solved: 2305
[Submit][Status][Discuss]
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
假设度数有限制的点的数量为 cnt,他们的度数分别为:d[i]
另:

那么,在 Purfer Sequence 中的不同排列的总数为:

而剩下的 n-2-sum 个位置,可以随意的排列剩余的 n-cnt 个点,于是,总的方案数就应该是:

化简之后为:

算了我在说一下,最后那个就是说,给了n-2-sum个位置,可以随便填数,填什么表示这个位置属于谁,好理解吧。
在有解的情况下,计算该结果输出就行了
无解的情况,就比如说超出了个数,这样子的,判断一下,根据prufer性质。
#include <bits/stdc++.h>
using namespace std;
int d[];
struct bigint
{
int a[], len; bigint()
{
memset(a, , ), len = ;
} bigint operator* (const int &rhs) const
{
bigint ans;
ans.len = len + ;
for(int i = ; i <= len; ++i)
ans.a[i] += a[i] * rhs;
for(int i = ; i < ans.len; ++i)
if(ans.a[i] > )
{
ans.a[i + ] += ans.a[i] / ;
ans.a[i] %= ;
}
while(!ans.a[--ans.len]);
return ans;
} bigint operator/ (const int &rhs) const
{
bigint ans;
ans = *this, ++ans.len;
for(int i = ans.len; i; --i)
{
ans.a[i - ] += ans.a[i] % rhs * ;
ans.a[i] /= rhs;
}
while(!ans.a[--ans.len]);
return ans;
}
}; int main()
{
int n, sum = , cnt = ;
bigint ans;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
{
scanf("%d", d + i);
if(!d[i])
{
puts("");
return ;
}
if(~d[i]) ++cnt, sum += d[i] - ;
}
if(sum > * n - )
{
puts("");
return ;
}
ans.a[] = ;
for(int i = n - - sum; i < n - ; ++i)
ans = ans * i;
for(int i = ; i <= n - - sum; ++i)
ans = ans * (n - cnt);
for(int i = ; i <= n; ++i)
for(int j = ; j <= d[i] - ; ++j)
ans = ans / j;
for(int i = ans.len; i; --i)
printf("%d", ans.a[i]);
puts("");
}
bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)的更多相关文章
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)
题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
- BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)
题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...
- BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
- BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合
1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...
- BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)
http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...
随机推荐
- sed练习简记
1. 使用多命令选项-e sed -e 'command1' -e 'command2' -e 'command3' 在/etc/passwd文件中搜索root.nobody或mail [root@s ...
- AJPFX总结在循环中break与continue的区别
相信刚学编程的人很容易被break,continue这两个关键词搞混淆了,两者都有跳出循环的意思,但是他们到底有什么区别呢?其实很简单,break是结束整个循环体,continue是结束当前这一单次循 ...
- iOS 中集成百度echarts3.0
突然项目中要用到图表,所以就用了百度的echarts,然后就是网上搜了一下,由于本人的JS不是很熟悉,但是研究了一下还是做出来了,其实也不是很难 最后做的效果大概如下图这种,由于界面上没调整,所以粗糙 ...
- c语言-依赖倒转
当一个文件(aa.c文件)依赖于头文件(bb.h)时,如果bb.c编译之后形成的bb.o文件重新编译后,aa.o的文件不需要重新编译 aa.c文件: bb.h文件:对bb.c文件进行声明 bb.c文件 ...
- 使用Jenkins进行android项目的自动构建(2)
Maven and POM 1. 什么是Maven? 官方的解释是: http://maven.apache.org/guides/getting-started/index.html#What_is ...
- CFAN:Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment
作者:嫩芽33出处:http://www.cnblogs.com/nenya33/p/6801045.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同意,必须保留此段声明:必须 ...
- (转)淘淘商城系列——使用maven tomcat插件启动聚合工程
http://blog.csdn.net/yerenyuan_pku/article/details/72672389 上文我们一起学习了如何使用maven tomcat插件来启动web工程,本文我们 ...
- (function(){})() 立即执行函数
(function(){})() 立即执行函数 (function(a){})(5) 带参的
- ubuntu apt-update NO_PUBKEY 40976EAF437D05B5 NO_PUBKEY 3B4FE6ACC0B21F32
Fetched 28.1 MB in 11s (2344 kB/s) W: GPG error: http://archive.canonical.com xenial Release: The fo ...
- mysql group_concat函数详解
group_concat( [DISTINCT] 要连接的字段 [Order BY 排序字段 ASC/DESC] [Separator '分隔符'] ) 1. --以id分组,把price字 ...