思路:

显然每个子图内都是森林

去掉所有子图1和n都连通且每条大边都存在的情况

直接DP上

NTT优化一波

注意前两项的值..

//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int mod=,N=;
int cases,n,R[N],fac[N],inv[N],A[N],B[N],h[N],f[N],g[N],jy;
int power(int x,int y){
int r=;
while(y){
if(y&)r=1ll*x*r%mod;
x=1ll*x*x%mod,y>>=;
}return r;
}
void NTT(int *a,int f,int m){
int L=,n;
for(n=;n<m;n<<=)L++;
for(int i=;i<n;i++)R[i]=(R[i>>]>>)|((i&)<<(L-));
for(int i=;i<n;i++)if(i<R[i])swap(a[i],a[R[i]]);
for(int l=;l<n;l<<=){
int wn=power(,((mod-)/(l<<)*f+(mod-))%(mod-));
for(int j=;j<n;j+=(l<<)){
int w=;
for(int k=;k<l;k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[j+k+l]%mod;
a[j+k]=(x+y)%mod,a[j+k+l]=(x-y+mod)%mod;
}
}
}
if(f==-){
int ni=power(n,mod-);
for(int i=;i<n;i++)a[i]=1ll*a[i]*ni%mod;
}
}
void cdq(int l,int r){
if(l==r){
if(l==)f[l]=;
else f[l]=(1ll*f[l]*fac[l-]+1ll*h[l]*fac[l-])%mod;
return;
}
int mid=(l+r)>>;
cdq(l,mid);
int len1=mid-l+,len2=r-l+,len=;
while(len<len1+len2)len<<=;
for(int i=;i<len1;i++)A[i]=1ll*f[l+i]*inv[l+i]%mod;
for(int i=len1;i<len;i++)A[i]=;
for(int i=;i<len2;i++)B[i]=h[i];
for(int i=len2;i<len;i++)B[i]=;
NTT(A,,len),NTT(B,,len);
for(int i=;i<len;i++)A[i]=1ll*A[i]*B[i]%mod;
NTT(A,-,len);
for(int i=mid+;i<=r;i++)f[i]=(f[i]+A[i-l])%mod;
cdq(mid+,r);
}
void init(){
fac[]=h[]=;
for(int i=;i<=;i++)fac[i]=1ll*fac[i-]*i%mod;
inv[]=power(fac[],mod-);
for(int i=;~i;i--)inv[i]=1ll*inv[i+]*(i+)%mod;
for(int i=;i<=;i++)h[i]=1ll*power(i,i-)*inv[i-]%mod;
cdq(,),f[]=;
for(int i=;i<;i++)A[i]=B[i]=;
for(int i=;i<=;i++)A[i]=1ll*f[i]*inv[i]%mod;
B[]=B[]=;
for(int i=;i<=;i++)B[i]=1ll*h[i]*(i-)%mod;
NTT(A,,),NTT(B,,);
for(int i=;i<;i++)g[i]=1ll*A[i]*B[i]%mod;
NTT(g,-,),g[]=;
for(int i=;i<=;i++)g[i]=1ll*g[i]*fac[i-]%mod;
}
int main(){
scanf("%d",&cases),init();
while(cases--){
scanf("%d",&n);int a1=,a2=;
for(int i=;i<=n;i++)scanf("%d",&jy),a1=1ll*a1*f[jy]%mod,a2=1ll*a2*g[jy]%mod;
printf("%lld\n",(1ll*a1*power(,n)%mod-a2+mod)%mod);
}
}

HDU 5279 分治NTT 图的计数的更多相关文章

  1. BZOJ 3456 NTT图的计数 容斥

    思路: RT 懒得写了 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm&g ...

  2. HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)

    题意  给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比 ...

  3. HDU 5279 YJC plays Minecraft (分治NTT优化DP)

    题目传送门 题目大意:有$n$个小岛,每个小岛上有$a_{i}$个城市,同一个小岛上的城市互相连接形成一个完全图,第$i$个小岛的第$a_{i}$个城市和第$i+1$个小岛的第$1$个城市连接,特别地 ...

  4. 【PKUSC2019】线弦图【计数】【树形DP】【分治FFT】

    Description 定义线图为把无向图的边变成点,新图中点与点之间右边当且仅当它们对应的边在原图中有公共点,这样得到的图. 定义弦图为不存在一个长度大于3的纯环,纯环的定义是在环上任取两个不相邻的 ...

  5. HDU 6270 Marriage (2017 CCPC 杭州赛区 G题,生成函数 + 容斥 + 分治NTT)

    题目链接  2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$ ...

  6. HDU 5322 Hope (分治NTT优化DP)

    题面传送门 题目大意: 假设现在有一个排列,每个数和在它右面第一个比它大的数连一条无向边,会形成很多联通块. 定义一个联通块的权值为:联通块内元素数量的平方. 定义一个排列的权值为:每个联通块的权值之 ...

  7. [gdoi2018 day1]小学生图论题【分治NTT】

    正题 题目大意 一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数. \(1\leq n,m\leq 10^5\) 解题思路 先考虑\(m=0\) ...

  8. 【BZOJ-3456】城市规划 CDQ分治 + NTT

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...

  9. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

随机推荐

  1. man中文手册安装

    转载自 https://www.cnblogs.com/fyc119/p/7116295.html man中文手册安装 下载源码 wget https://src.fedoraproject.org/ ...

  2. Python初学者容易忽略的一些细节

    1.Python中当让给变量1赋值上变量2的值时,变量1直接指向值在内存中存储的地址,即变量1存储的是变量2的值而不是指向变量 2."""的用法 1.多行注释 2.多行输 ...

  3. python 基础知识及运算符

    可变类型:列表.字典 不可变类型:整形.字符串.元组 标示符: 1.字母数字和下划线组成 2.不能以数字开头 3.区分大小写 4.不能以保留字命名 变量: 1.用描述性的单词命名变量,不要用保留字.汉 ...

  4. empty array & Array.from

    empty array bug const duplicationArray = (arr = [], times = 2, debug = false) => { let result = [ ...

  5. [luoguP2038] 无线网络发射器选址(模拟)

    传送门 又是个模拟水题,考虑边界就好,连long long都不用开. ——代码 #include <cstdio> #include <iostream> int n, d, ...

  6. [luoguP2031] 脑力达人之分割字串(DP)

    传送门 想了个4次方算法,没想到也A了,数据真是水. 其实两个字符串匹配那部分可以用kmp优化 ——代码 #include <cstdio> #include <cstring> ...

  7. [Usaco2015 dec]Max Flow

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 129[Submit][Status][Discuss] Descriptio ...

  8. Ubuntu源码下载方法

    首先进入: http://cdimage.ubuntu.com/releases/ 选择相应的版本: 进入release页面: http://cdimage.ubuntu.com/releases/1 ...

  9. 【sql技巧】mysql修改时,动态指定要修改的字段 update `table` set (case when ....) = 1 where id = xx

    如果你点进了这篇帖子,那么你一定遇到了跟我一样的问题.别看题目的set case when...,我一开始也是第一反应是用case when但是发现并不好使. 问题呢,说得高大上一点:动态指定要修改的 ...

  10. java学习总结——你的前世今生

    一.背景 JAVA语言最開始仅仅是Sun电脑(Sun MicroSystems)公司在1990年12月開始研究的一个内部项目. Sun电脑公司的一个叫做帕特里克·诺顿的project师被公司自己开发的 ...