Accepted
31MS
  224K
1351Byte
2014-11-13 13:32:56.0

坑爹的无限gcd,,,尼玛想好久,原来要x对y算一次,y再对x算一次,,,

赵信的往事

时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
总提交 : 20            测试通过 : 2

描述

赵信——德玛西亚的总管,可谓一人之下,万人之上。但谁能想到,他以前在诺克萨斯的角斗场过的是怎样的生活?

那时,成千上万的奴隶或战俘被抓进角斗场,通过血腥的杀戮供贵族们取乐。所以,为了活下去,除了自身的实力之外,拉帮结派也是必不可少的。显然,这样的事只可能发生在互相信赖的人的中间,而在当时,人们互相信赖的标准却很奇怪——每个人都有一个编号,若两个人可以相互信赖,那么当且仅当这两个编号的素因子集合相同。

那么问题来了:

现在有三个人想组团,请问他们能相互信赖么?

输入

先输入一个正整数T,表示共有T组测试样例,1≤T≤10000。

对于每一个测试样例,输入三个正整数,对于第i个数pi,表示第i个人的编号(1≤pi≤109)。

输出

对于每组样例,如果可以可以成功组团,则输出“YES”,否则输出“NO”。

样例输入

2
3 6 9
3 9 27

样例输出

NO
YES

提示

对于样例一,6的素因子集合为{2,3},与其他人不同,所以不行;

对于样例二,所有数的素因子集合均为{3},因此可以组团。

题目来源

yuman

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<set>
#define maxi(a,b) (a)>(b)?(a):(b)
#define mini(a,b) (a)<(b)?(a):(b)
#define N 1000005
#define mod 10000
#define ll long long using namespace std; int T;
int flag;
int a[]; int gcd(int x,int y)
{
if(y==)
return x;
return gcd(y,x%y);
} void ini()
{
flag=;
scanf("%d%d%d",&a[],&a[],&a[]);
//printf("%d %d %d\n",a[0],a[1],a[2]);
sort(a,a+);
} void cal(int x,int y)
{
int g;
if(x== && y==) return;
g=gcd(x,y);
x/=g;
y/=g;
if(x== && y==) return;
else if(g== && y%x!=){
flag=;return;
}
else{
cal(x,g);
}
return;
//}
} void solve()
{
// printf(" sss\n");
cal(a[],a[]);
cal(a[],a[]);
if(flag==) return;
// printf(" sss2\n");
cal(a[],a[]);
cal(a[],a[]);
} void out()
{
//printf(" oooo\n");
if(flag==){
printf("YES\n");
}
else{
printf("NO\n");
}
} int main()
{
// freopen("data.in","r",stdin);
scanf("%d",&T);
while(T--)
// while(scanf("%I64d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}

noj 2069 赵信的往事 [yy题 无限gcd]的更多相关文章

  1. [YY题]HDOJ5288 OO’s Sequence

    题意:求这个式子 $\sum \limits_{i=1}^{n} \sum \limits_{j=1}^{m} f(i, j) mod (10^9 + 7)$ 的值 就是对每个区间[i, j]枚举区间 ...

  2. NOJ 1643 阶乘除法(YY+小技巧)

    [1643] 阶乘除法 时间限制: 5000 ms 内存限制: 65535 K 问题描述 输入两个正整数 n, m,输出 n!/m!,其中阶乘定义为 n!= 1*2*3*...*n (n>=1) ...

  3. cf 215 C. Crosses yy题

    链接:http://codeforces.com/problemset/problem/215/C C. Crosses time limit per test 2 seconds memory li ...

  4. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  5. 【Luogu】P1072Hankson的趣味题(gcd)

    这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...

  6. [俺们学校的题]伪.GCD

    GCD 题面: 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 思路: 首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最 ...

  7. CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)

    http://codeforces.com/problemset/problem/992/B  题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...

  8. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  9. 【HDU5512】 2015沈阳赛区D题 规律题(GCD)

    第一篇博客,就从一个比较简单的题目入手吧! 题目: [HDU5512] 题意: 有n个塔,编号为1~n,  编号为a,b的塔已经维修好,此外其他的塔都需要维修.塔的维修是有顺序的,每次只能维修编号为k ...

随机推荐

  1. 一个典型的flex布局,兼容性比较好

    html 代码: <body class="flex-wrap col-flex"> <header class="midCenter flex-wra ...

  2. Qt+事件的接收和忽略

    事件的接收与忽略的示意图如下图: 依据前面的知识,事件是可以依据情况进行接收和忽略的,事件的传播是组件层次上面的,而不是依靠类继承机制.在一个特殊的情形下,我们必须使用accept()和ignore( ...

  3. QT +自定义控件-spin+slider

    动手实现自定义控件: 1.首先在ui界面中添加一个(Widget)容器类.如图中的1所示 2.在项目中添加一个SmallWidget类,如下: 3.接着在程序编辑界面进行程序编辑如下: #includ ...

  4. java中regex参考

    在Sun的Java JDK 1.40版本中,Java自带了支持正则表达式的包,本文就抛砖引玉地介绍了如何使用java.util.regex包. 可粗略估计一下,除了偶尔用Linux的外,其他Linu ...

  5. ewebeditor上传文件大小

    做项目大家都少不了要跟html在线编辑器打交道,这里我把我的一些使用经验及遇到的问题发出来和大家交流一下. Ewebeditor使用说明:一.部署方式:1.直接把压缩目录中的文件拷贝到您的网站发布目录 ...

  6. 安装pycharm 2018.3 Professional Edition

    1.下载pycharm 2018.3 Professional 2.下载破解补丁,Gitee仓库 或 直接下载(Direct download link) ,并放到pycharm目录下的\bin目录( ...

  7. WYS APP

    UI图:http://modao.io/app/H8eZCQdV1pskjQ7z8bLh 四个tab:我要赛.赛事.运动吧.个人中心 赛事页面 1.主要是个NavigationController 2 ...

  8. JavaScript调试技巧之console.log()详解--2015-08-07

    对于JavaScript程序的调试,相比于alert(),使用console.log()是一种更好的方式,原因在于:alert()函数会阻断 JavaScript程序的执行,从而造成副作用:而cons ...

  9. [LUOGU] P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  10. (28)zabbix用户宏变量详解macro

    zabbix宏变量让zabbix变得更灵活,变量可以定义在主机.模板以及全局,变量名称类似:{$MACRO},宏变量都是大写的.认识了宏变量,你会感叹zabbix越发的强大. 变量可以用于如下地方: ...