背包!背包!HDU 2602 Bone Collector + HDU 1114 Piggy-Bank + HDU 2191 512
http://acm.hdu.edu.cn/showproblem.php?pid=2602
第一题 01背包问题
http://acm.hdu.edu.cn/showproblem.php?pid=1114
第二题 完全背包问题
http://acm.hdu.edu.cn/showproblem.php?pid=2191
第三题 多重背包问题
这里重复使用数组 认识倒序 和 正序的原因
转自:http://www.cppblog.com/tanky-woo/archive/2010/07/31/121803.html
"
01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
把这个过程理解下:在前i件物品放进容量v的背包时,
它有两种情况:
第一种是第i件不放进去,这时所得价值为:f[i-1][v]
第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]
(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)
最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。
(这是基础,要理解!)
这里是用二位数组存储的,可以把空间优化,用一位数组存储。
用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。
*这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?
逆序!
"
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; struct Bag
{
int w,v;
}bag[];
int main()
{
freopen("in.txt", "r", stdin); int T, N, V;
scanf("%d", &T);
while(T--)
{
scanf("%d%d",&N, &V);
for (int i = ; i < N; i++)
{
scanf("%d", &bag[i].v);
}
for (int i = ; i < N; i++)
{
scanf("%d", &bag[i].w);
}
long long dp[];
memset(dp, , sizeof(dp));
for (int i = ; i < N; i++)
{
for (int j = V; j >= bag[i].w; j--)
{
dp[j] = max(dp[j], dp[j-bag[i].w] + bag[i].v);
}
}
cout << dp[V] << endl;
}
}
第一题
"
完全背包:
完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
完全背包按其思路仍然可以用一个二维数组来写出:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}
同样可以转换成一维数组来表示:
伪代码如下:
for i=1..N
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]}
顺序!
想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。
"
#include <iostream>
#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
using namespace std; struct Coin
{
int v, w;
}coin[];
int dp[];
int main()
{
freopen("in.txt", "r", stdin);
int T, E, F;
scanf("%d", &T);
while (T--)
{
int n;
scanf("%d%d", &E, &F);
scanf("%d", &n);
for (int i = ; i < n; i++)
{
scanf("%d%d", &coin[i].v, &coin[i].w);
}
F -= E;
fill(dp, dp+, INF);
dp[] = ;
for (int i = ; i < n; i++)
{
for (int j = coin[i].w; j <= F; j++ )
{
if (dp[j] > dp[j-coin[i].w]+coin[i].v) dp[j] = dp[j-coin[i].w]+coin[i].v;
}
}
if (dp[F] == INF) cout << "This is impossible." << endl;
else cout << "The minimum amount of money in the piggy-bank is " << dp[F] <<"." << endl;
}
}
第二题
"
多重背包
多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}
这里同样转换为01背包:
普通的转换对于数量较多时,则可能会超时,可以转换成二进制(暂时不了解,所以先不讲)
对于普通的。就是多了一个中间的循环,把j=0~bag[i],表示把第i中背包从取0件枚举到取bag[i]件。
"
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std; struct Rice
{
int money, weight, num;
}rice[];
int main()
{
int T;
freopen("in.txt" ,"r", stdin);
scanf("%d", &T);
while (T--)
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i < m; i++)
{
scanf("%d%d%d", &rice[i].money, &rice[i].weight, &rice[i].num);
}
int dp[][];//定义dp[i][j] 前i 件大米 在背包容量为j 的情况下 获得的最多重量
memset(dp, , sizeof(dp));
for(int i = ; i < m; i++)
{
for (int j = ; j <= n; j++)
{
for (int k = ; k <= rice[i].num && k*rice[i].money <= j;k++)
{
dp[i+][j] = max(dp[i+][j], dp[i][j-k*rice[i].money] + k*rice[i].weight);
}
}
}
//重复利用数组 转化为01背包
int dp1[];//背包容量为i时 可以取 得 的最大值
memset(dp1, , sizeof(dp1));
for (int i = ; i < m; i++)
{
for (int j = ; j < rice[i].num; j++) //这么多个 就只能取这么多次
{
for (int k = n; k >= rice[i].money; k--)
{
dp1[k] = max(dp1[k], dp1[k-rice[i].money]+rice[i].weight);
} }
}
cout << dp1[n] << endl;
}
}
第三题
背包!背包!HDU 2602 Bone Collector + HDU 1114 Piggy-Bank + HDU 2191 512的更多相关文章
- HDU 2602 Bone Collector 0/1背包
题目链接:pid=2602">HDU 2602 Bone Collector Bone Collector Time Limit: 2000/1000 MS (Java/Others) ...
- HDOJ(HDU).2602 Bone Collector (DP 01背包)
HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...
- hdu 2602 Bone Collector(01背包)模板
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/Ot ...
- HDU 2602 Bone Collector
http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 2602 Bone Collector(经典01背包问题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/O ...
- HDU 2602 Bone Collector (01背包问题)
原题代号:HDU 2602 原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 原题描述: Problem Description Many yea ...
- hdu 2602 Bone Collector 背包入门题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 题目分析:0-1背包 注意dp数组的清空, 二维转化为一维后的公式变化 /*Bone Coll ...
- HDU 2602 Bone Collector(01背包裸题)
Bone Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- HDU 2602 - Bone Collector - [01背包模板题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Many years ago , in Teddy’s hometown there was a ...
随机推荐
- AJPFX关于抽象类和接口的区别
一.设计目的不同:接口体现的是一种规范,,类似于系统的总纲,它制定了系统的各模块应遵守的标准抽象类作为多个子类的共同父类,体现的是模式化的设计,抽象类可以认为是系统的中间产品,已经实现了部分功能,部分 ...
- VUE学习——vue的内部指令学习(趁自己没忘,学习记录一下)
1.v-if&v-else&v-show v-if用来判断是否加载html的DOM,v-if和v-else一般是一起用的. v-show相当于display,DOM已经加载出来了,这个 ...
- 一键修改android 字体和图片大小.
项目中需要动态更改 app的字体和图片, 在查阅中找到的更改主题的解决办法,和单独的修改字体的方法. 这两种方法的确有效果但是实现麻烦,在修改字体的过程中,找到一个额外的方法, 修改字体的实现更改 ...
- SQLite -创建数据库
SQLite -创建数据库 SQLite sqlite3命令用于创建新的SQLite数据库.你不需要有任何特权来创建一个数据库. 语法: sqlite3命令的基本语法如下: $sqlite3 Data ...
- hdu5792 World is Exploding(多校第五场)树状数组求逆序对 离散化
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5792 题目描述:给你n个值,每个值用A[i]表示,然后问你能否找到多少组(a,b,c,d)四个编号,四 ...
- xorequation(DFS完全枚举)
题目 有一个含有N个未知数的方程如下: x1^x2^...^xn= V,给定N,V,再给定正整数a1,a2,...an满足1≤ai≤9且∏Ni=1(ai+1) ≤ 32768,请输出所有满足0≤xi ...
- python_使用qrcode生成二维码
1.功能 使用qrcode生成二维码 2.代码 #生成二维码: import qrcode #根据url生成二维码 def qrcodeWithUrl(url): img = qrcode.make( ...
- docker 镜像仓库的安装与使用
安装Docker Compose 解决依赖 [root@service-1 ~]# curl -L "https://github.com/docker/compose/releases/d ...
- 【搜索】P1019 单词接龙
题目描述 单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合 ...
- ç7—UIViewController
UIViewController继承了UIResponder,而UIResponder继承了NSObject,UIViewController是所有视图控制器的父类. 在MVC模式中,UIViewCo ...