题目

题意:sum(l,r)表示数列a中索引为l到r-1(都包含)的数之和(如果l==r则为0)。给出数列a,求合适的delim0delim1delim2,使res = sum(0, delim0) - sum(delim0, delim1) + sum(delim1, delim2) - sum(delim2, n)最大。

方法:枚举delim1,扫一遍就可以求出此时能使res最大的delim0和delim2。记录res最大值。实现有一些细节,比如可以将res的计算公式化为前缀和的公式。

曾经错在:1.int会爆,没注意  2.输出了调试的时候输出的内容(ans)而不是dl0,dl1,dl2

 #include<cstdio>
typedef long long LL;
LL n,a[],dl1,dl0,dl2,t_max_dl0,t_max_dl2,max_dl0,max_dl2,t_ans,ans,max1,max_dl1;
int main()
{
LL i,t1;
scanf("%lld",&n);
for(i=;i<n;i++)
scanf("%lld",&a[i]);
for(dl1=;dl1<n;dl1++)
{
t_ans=;
t1=;
for(i=;i<dl1;i++)
t1-=a[i];
//此时表示dl0=0时sum(0,delim0)-sum(delim0,delim1)
max1=t1;
t_max_dl0=;
for(dl0=;dl0<=dl1;dl0++)
{
t1+=*a[dl0-];
if(t1>max1)
{
max1=t1;
t_max_dl0=dl0;
}
}
t_ans+=max1;
t1=;
for(i=dl1;i<n;i++)
t1-=a[i];
//此时表示dl2=dl1时sum(delim1,delim2)-sum(delim2,n)
max1=t1;
t_max_dl2=dl1;
for(dl2=dl1+;dl2<=n;dl2++)
{
t1+=*a[dl2-];
if(t1>max1)
{
max1=t1;
t_max_dl2=dl2;
}
}
t_ans+=max1;
if(t_ans>ans)
{
max_dl0=t_max_dl0;
max_dl1=dl1;
max_dl2=t_max_dl2;
ans=t_ans;
}
}
printf("%lld %lld %lld",max_dl0,max_dl1,max_dl2);
//printf("%lld",ans);
return ;
}

暴力对拍程序:

 #include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
LL c[];
LL n,m;
LL res,max_res,a1,a2,a3;
LL lowbit(LL x)
{
return x&-x;
}
void add(LL num,LL x)
{
while(num<=n)
{
c[num]+=x;
num+=lowbit(num);
}
}
LL sum1(LL x)
{
LL ans=;
while(x>)
{
ans+=c[x];
x-=lowbit(x);
}
return ans;
}
LL sum(LL l,LL r)
{
if(l>r) return ;
return sum1(r)-sum1(l-);
}
int main()
{
LL i,j,k,t;
scanf("%lld",&n);
for(i=;i<=n;i++)
{
scanf("%lld",&t);
add(i,t);
}
for(i=;i<=n;i++)
for(j=i;j<=n;j++)
for(k=j;k<=n;k++)
{
res=sum(,i)-sum(i+,j)+sum(j+,k)-sum(k+,n);
if(res>max_res)
{
max_res=res;
a1=i;a2=j;a3=k;
}
}
printf("%lld",max_res);
return ;
}

Four Segments CodeForces - 846C的更多相关文章

  1. D - Nested Segments CodeForces - 652D (离散化+树桩数组)

    D - Nested Segments CodeForces - 652D You are given n segments on a line. There are no ends of some ...

  2. Segments CodeForces 909B (找规律)

    Description You are given an integer N. Consider all possible segments (线段,划分)on the coordinate axis ...

  3. Xors on Segments Codeforces - 620F

    http://codeforces.com/problemset/problem/620/F 此题是莫队,但是不能用一般的莫队做,因为是最优化问题,没有办法在删除元素的时候维护答案. 这题的方法(好像 ...

  4. A - Points and Segments CodeForces - 429E

    题解: 方法非常巧妙的一道题 首先考虑要求全部为0怎么做 发现是个欧拉回路的问题(很巧妙) 直接dfs一遍就可以了 而这道题 要求是-1,1,0 我们可以先离散化 完了之后判断每个点被奇数还是偶数条边 ...

  5. Bipartite Segments CodeForces - 901C (区间二分图计数)

    大意: 给定无向图, 无偶环, 每次询问求[l,r]区间内, 有多少子区间是二分图. 无偶环等价于奇环仙人掌森林, 可以直接tarjan求出所有环, 然后就可以预处理出每个点为右端点时的答案. 这样的 ...

  6. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  7. codeforces 895B XK Segments 二分 思维

    codeforces 895B XK Segments 题目大意: 寻找符合要求的\((i,j)\)对,有:\[a_i \le a_j \] 同时存在\(k\),且\(k\)能够被\(x\)整除,\( ...

  8. Codeforces Beta Round #14 (Div. 2) C. Four Segments 水题

    C. Four Segments 题目连接: http://codeforces.com/contest/14/problem/C Description Several months later A ...

  9. Educational Codeforces Round 10 D. Nested Segments 离线树状数组 离散化

    D. Nested Segments 题目连接: http://www.codeforces.com/contest/652/problem/D Description You are given n ...

随机推荐

  1. 使用mysql导入数据时关掉binlog

    在my.cnf中注释掉 log-bin=bin-log参数然后重启数据库

  2. Mac中配置eclipse的php开发环境

    1.mac中自带php和apache,不过版本不是最新的. 2.打开apache配置文件中php相关设置,并设置php的工程目录为你想要的目录 3.复制php.ini.default为php.ini, ...

  3. java的自定义异常类

    编写自定义异常类的模式 编写自定义异常类实际上是继承一个Exception标准异常类,用新定义的异常处理信息覆盖原有信息的过程.常用的编写自定义异常类的模式如下: public classCustom ...

  4. 新装Linux系统没有网卡驱动的解决办法和步骤

    Linux下查看网卡驱动和版本信息 - CSDN博客 https://blog.csdn.net/guyan1101/article/details/72770424/ 检查网卡是否加载 - Linu ...

  5. Lambda 闭包 匿名 函数 类

    深入理解Java 8 Lambda(语言篇——lambda,方法引用,目标类型和默认方法) - _Luc_ - 博客园 https://www.cnblogs.com/figure9/p/java-8 ...

  6. __sizeof__()

    https://bugs.python.org/issue2898 https://bugs.python.org/file10353/footprint.patch Index: Python/sy ...

  7. 关于在PHP中当一个请求未完成时,再发起另一个请求被阻塞的问题

    最近做项目的时候遇到个问题,就是做阿里云oss大文件上传进度条显示,因为要实时查询上传分片进度,所以在上传的同时必须要再发起查询的请求,但是一直都是所有分片上传完成后查询的请求才执行,刚开始以为是阿里 ...

  8. 传统maven项目创建

    转自:https://blog.csdn.net/wangfengtong/article/details/77098238 需求表均同springmvc案例 此处只是使用maven 注意,以下所有需 ...

  9. I2S总线协议理解

    I2S总线 Inter IC Sound总线又称集成电路内置音频总线. I2S对数字音频设备之间的音频数据传输而制定的一种总线标准. 采用了沿独立的导线传输时钟与数据信号的设计,通过将数据和时钟信号分 ...

  10. react源码分析

    ReactMount.render -> ReactMount._renderSubtreeIntoContainer -> ReactMount._renderNewRootCompon ...