POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门
题意
给出n,m,k,求
\]
A是矩阵
分析
我们首先会想到等比公式,然后得到这样一个式子:
\]
发现要用矩阵除法,可以用求矩阵逆来做,现在我们换一种做法,我们发现有这样一个性质:
\begin{matrix}
A & E \\
0 & E \\
\end{matrix}
\right]^n=
\left[
\begin{matrix}
A^{n} & \sum_{i=0}^{n-1}A^i \\
0 & E \\
\end{matrix}
\right]
\]
那么我们将原先矩阵扩大成四倍,对矩阵求k+1次幂,然后取右上角减去一个单位阵即可
trick
代码
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
struct Matrix
{
int matrix[80][80];
}ans,ret;
int t,n,k,mod;
Matrix multi(Matrix a,Matrix b)
{
Matrix tmp;
for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)
{
tmp.matrix[i][j]=0;
for(int k=1;k<=n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1;i<=n;++i)for(int j=1;j<=n;++j)
{
for(int k=n+1;k<=2*n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1;i<=n;++i)for(int j=n+1;j<=2*n;++j)
{
tmp.matrix[i][j]=0;
for(int k=1;k<=n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1;i<=n;++i)for(int j=n+1;j<=2*n;++j)
{
for(int k=n+1;k<=2*n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1+n;i<=2*n;++i)for(int j=1;j<=n;++j)
{
tmp.matrix[i][j]=0;
for(int k=1;k<=n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1+n;i<=2*n;++i)for(int j=1;j<=n;++j)
{
for(int k=n+1;k<=2*n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=n+1;i<=2*n;++i)for(int j=n+1;j<=2*n;++j)
{
tmp.matrix[i][j]=0;
for(int k=1;k<=n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
for(int i=1+n;i<=2*n;++i)for(int j=n+1;j<=2*n;++j)
{
for(int k=n+1;k<=2*n;++k) (tmp.matrix[i][j]+=a.matrix[i][k]*b.matrix[k][j])%=mod;
}
return tmp;
}
void fast_mod(int p)
{
memset(ans.matrix,0,sizeof(ans.matrix));
for(int i=1;i<=2*n;++i) ans.matrix[i][i]=1;
for(;p;p>>=1,ret=multi(ret,ret)) if(p&1) ans=multi(ans,ret);
}
int main()
{
//freopen("data.in","w",stdout);
while(scanf("%d %d %d",&n,&k,&mod)!=EOF)
{
for(int i=1;i<=n;++i)for(int j=1;j<=n;++j) scanf("%d",&ret.matrix[i][j]);
for(int i=1;i<=n;++i)for(int j=n+1;j<=2*n;++j) if((j-i)==n) ret.matrix[i][j]=1;else ret.matrix[i][j]=0;
for(int i=n+1;i<=2*n;++i)for(int j=1+n;j<=2*n;++j) if(i==j) ret.matrix[i][j]=1;else ret.matrix[i][j]=0;
for(int i=n+1;i<=2*n;++i)for(int j=1;j<=n;++j) ret.matrix[i][j]=0;
//for(int i=1;i<=2*n;++i)for(int j=1;j<=2*n;++j) printf("%d%c",ret.matrix[i][j],j==2*n?'\n':' ');
fast_mod(k+1);
//for(int i=1;i<=2*n;++i)for(int j=1;j<=2*n;++j) printf("%d%c",ans.matrix[i][j],j==2*n?'\n':' ');
for(int i=1;i<=n;++i)for(int j=n+1;j<=2*n;++j) if((j-i)==n) (ans.matrix[i][j]+=(mod-1))%=mod;
for(int i=1;i<=n;++i)for(int j=1+n;j<=2*n;++j) printf("%d%c",ans.matrix[i][j],j==2*n?'\n':' ');
}
return 0;
}
POJ3233:Matrix Power Series(矩阵快速幂+递推式)的更多相关文章
- POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 27277 Accepted: ...
- POJ3233:Matrix Power Series(矩阵快速幂+二分)
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k ...
- POJ3233 Matrix Power Series(矩阵快速幂+分治)
Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak. ...
- POJ 3233:Matrix Power Series 矩阵快速幂 乘积
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 18450 Accepted: ...
- POJ 3233 Matrix Power Series 矩阵快速幂
设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...
- POJ 3233 Matrix Power Series 矩阵快速幂+二分求和
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- POJ3233 Matrix Power Series(快速幂求等比矩阵和)
题面 \(solution:\) 首先,如果题目只要我们求\(A^K\) 那这一题我们可以直接模版矩乘快速幂来做,但是它现在让我们求$\sum_{i=1}^{k}{(A^i)} $ 所以我们思考一下这 ...
- POJ-3233 Matrix Power Series 矩阵A^1+A^2+A^3...求和转化
S(k)=A^1+A^2...+A^k. 保利求解就超时了,我们考虑一下当k为偶数的情况,A^1+A^2+A^3+A^4...+A^k,取其中前一半A^1+A^2...A^k/2,后一半提取公共矩阵A ...
随机推荐
- Delphi:解决重绘造成的窗体闪烁问题
解决窗体闪烁问题 具体代码: 1.在声明窗体类时加入: private procedure CreateParams(var Params: TCreateParams); overrid ...
- Python---django轻量级框架
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...
- makefile的语法及写法(二)
3 Makefile书写规则 -------------------------------------------------------------------------------- 规则包 ...
- mybatis结合generator进行分页插件PluginAdapter开发
使用org.mybatis.generator生成UserExample时,无法进行分页,使用下面这个类运行generator便可以生成分页相关的属性了 package org.mybatis.gen ...
- 【转载】《Unix网络编程》思维导图
参考这篇文章,很不错: http://www.cnblogs.com/qiaoconglovelife/p/5734768.html
- topcoder srm 610
div1 250pt: 题意:100*100的01矩阵,找出来面积最大的“类似国际象棋棋盘”的子矩阵. 解法:枚举矩阵宽(水平方向)的起点和终点,然后利用尺取法来找到每个固定宽度下的最大矩阵,不断更新 ...
- eclipse环境下无法创建android virtual Devices(AVD)问题解决的方法汇总
首先,要在eclipse环境下成功的创建一个安卓虚拟机,须要有三项东西,第一就是eclipse,第二就是android SDK Manager,第三就是ADT,也就是eclipse环境下的一个安卓虚拟 ...
- Tomcat-公布WEB应用
1.定义Context 进入管理WEB应用的URL是http://localhost:8080/manager/html. username与password的设置:打开tomcat安装文件夹中的co ...
- webpack-Dependency Graph(依赖图)
依赖图(Dependency Graph) 任何时候,一个文件依赖于另一个文件,webpack 就把此视为文件之间有依赖关系. 这使得 webpack 可以接收非代码资源(non-code asset ...
- android 多进程 Binder AIDL Service
本文參考http://blog.csdn.net/saintswordsman/article/details/5130947 android的多进程是通过Binder来实现的,一个类,继承了Bind ...