Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 933    Accepted Submission(s): 345

Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

好题啊  学到了很多东西...

首先 俄罗斯乘法用于大数取模。中国剩余定理解同模方程组。记住这个解不是唯一的...

容斥原理解决 统计问题

/* ***********************************************
Author :guanjun
Created Time :2016/7/30 13:10:44
File Name :hdu5768.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std; ll a[],m[];
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){d=a;x=1LL;y=0LL;}
else {ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
ll mult(ll a,ll k,ll m){
ll res=;
while(k){
if(k&1LL)res=(res+a)%m;
k>>=;
a=(a<<)%m;
}
return res;
}
ll china(int n,ll *a,ll *m){
ll M=,d,y,x=;
for(int i=;i<n;i++)M*=m[i];
for(int i=;i<n;i++){
ll w=M/m[i];
ex_gcd(m[i],w,d,d,y);
x=(x+mult(y,mult(w,a[i],M),M))%M;
}
return (x+M)%M;
}
ll p[],yu[];
int n;
ll get_ans(ll x){
if(x==)return ;
ll ans=;
int st=(<<n);
for(int i=;i<st;i++){
int cnt=;
ll cur=;
m[cnt]=;a[cnt]=;
cur*=;cnt++;
for(int j=;j<n;j++){
if(i&(<<j)){
m[cnt]=p[j];
a[cnt]=yu[j];
cnt++;
cur*=p[j];
}
}
ll tmp=china(cnt,a,m);
if(tmp>x)continue;
if(cnt&)ans+=(x-tmp)/cur+;
else ans-=(x-tmp)/cur+;
}
//cout<<ans<<endl;
return ans+x/;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
int T,t;
ll l,r;
cin>>T;
for(int t=;t<=T;t++){
scanf("%d %I64d %I64d",&n,&l,&r);
for(int i=;i<n;i++)
scanf("%I64d %I64d",&p[i],&yu[i]);
printf("Case #%d: %I64d\n",t,get_ans(r)-get_ans(l-));
}
return ;
}

HDU5768Lucky7的更多相关文章

  1. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

随机推荐

  1. 利用filter过滤去重

    var r, ary = ['apple', 'strawberry', 'banana', 'pear', 'apple', 'orange', 'orange', 'strawberry']; r ...

  2. NOIP专题复习1 图论-最短路

    一.知识概述 今天我们要复习的内容是图论中的最短路算法,我们在这里讲3种最短路求法,分别是:floyd,dijkstra,spfa. 那么我们从几道例题来切入今天讲解的算法. 二.典型例题 1.热浪 ...

  3. Linux部署Web项目小记

    1.安装Tomcat 官网下载 解压缩:tar -zxvf apache-tomcat-8.0.32.tar.gz 配置server.xml 连接池: <Executor name=" ...

  4. galera cluster安装与配置

    由于公司数据量与并发的日渐增大,普通的主从复制已无法满足要求.对比了网上PXC.galera.mysql cluster等方案,最终决定选择galera cluster. 以下为安装步骤: 1.下载g ...

  5. [Python3网络爬虫开发实战] 1.9.1-Docker的安装

    Docker是一种容器技术,可以将应用和环境等进行打包,形成一个独立的.类似于iOS的App形式的“应用”.这个应用可以直接被分发到任意一个支持Docker的环境中,通过简单的命令即可启动运行.Doc ...

  6. Go:slice

    一.切片创建方式 func main() { // 创建切片方式1 // 让切片引用一个数组 array := [...]int{1, 2, 3, 4} slice1 := array[1:3] fm ...

  7. PHPExcel读取表格内容

    PHPExcel读取表格 先引入类IOFactory.php require_once '../PHPExcel/IOFactory.php'; $filePath = "test.xlsx ...

  8. 杭电 1009 FatMouse' Trade (贪心)

    Problem Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding th ...

  9. git clone问题

    中秋节回来上班 竟然忘记带电脑了  ̄□ ̄||还好同事有备用电脑,这要是回去拿估计上午都不用干什么了,用同事电脑当然需要安装环境,下面说一下git上遇到的问题吧 (1)首先我尝试用https方式克隆代码 ...

  10. Webdriver元素定位1

    元素的定位应该是自动化测试的核心,要想操作一个元素,首先应该识别这个元素. webdriver提供了一系列的元素定位方法,常用的有以下几种: id name class name tag link t ...