bzoj4951 [Wf2017]Money for Nothing
题解:
答案显然是$max((q-p)*(e-d))$
依然先贪心。
对于工厂,我们倾向于$pi<pj,di<dj$的;
对于买家,我们倾向于$qi>qj,ei>ej$的。
于是将一定不是最优解的工厂和买家划掉。
然后我们发现这个东西是满足决策单调性的。
问我怎么证?画一个二维坐标系,然后将选中的点都画上,然后就理性易证了。
最后分治。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 500050
#define ll long long
inline ll rd()
{
ll f=,c=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=*c+ch-'';ch=getchar();}
return f*c;
}
int n0,m0,n,m;
struct Pair
{
ll x,y;
Pair(){}
Pair(ll x,ll y):x(x),y(y){}
};
bool cmp1(Pair a,Pair b)
{
if(a.x!=b.x)return a.x<b.x;
return a.y<b.y;
}
bool cmp2(Pair a,Pair b)
{
if(a.x!=b.x)return a.x<b.x;
return a.y>b.y;
}
Pair a0[N],b0[N],a[N],b[N];
ll ans = ;
void divi(int l1,int r1,int l2,int r2)
{
if(l1>r1||l2>r2)return ;
if(l1==r1)
{
for(int i=l2;i<=r2;i++)
if(b[i].x>a[l1].x)ans = max(ans,(b[i].x-a[l1].x)*(b[i].y-a[l1].y));
return ;
}
if(l2==r2)
{
for(int i=l1;i<=r1;i++)
if(b[l2].x>a[i].x)ans = max(ans,(b[l2].x-a[i].x)*(b[l2].y-a[i].y));
return ;
}
int mid = (l2+r2)>>;
int pos=l1;
ll max_val=-0x3f3f3f3f3f3f3f3fll;
for(int i=l1;i<=r1;i++)
{
if(b[mid].x<=a[i].x&&b[mid].y<=a[i].y)continue;
if((b[mid].x-a[i].x)*(b[mid].y-a[i].y)>max_val)
{
pos = i;
max_val=(b[mid].x-a[i].x)*(b[mid].y-a[i].y);
}
}
ans=max(ans,max_val);
divi(l1,pos,l2,mid-);
divi(pos,r1,mid+,r2);
}
int main()
{
// freopen("33.in","r",stdin);
n0 = rd(),m0 = rd();
for(int i=;i<=n0;i++)
a0[i].x = rd(),a0[i].y = rd();
for(int i=;i<=m0;i++)
b0[i].x = rd(),b0[i].y = rd();
sort(a0+,a0++n0,cmp1);
sort(b0+,b0++m0,cmp2);
ll lim = 0x3f3f3f3f3f3f3f3fll;
for(int i=;i<=n0;i++)
if(a0[i].y<lim)
{
a[++n]=a0[i];
lim = a0[i].y;
}
for(int i=;i<=m0;i++)
{
while(m&&b[m].y<=b0[i].y)m--;
b[++m]=b0[i];
}
divi(,n,,m);
printf("%lld\n",ans);
return ;
}
bzoj4951 [Wf2017]Money for Nothing的更多相关文章
- 4951: [Wf2017]Money for Nothing 决策单调性 分治
Bzoj4951:决策单调性 分治 国际惯例题面:一句话题面:供应商出货日期为Ei,售价为Pi:用户收购截止日期为Si,收购价格为Gi.我们要求max((Si-Ej)*(Gi-Pj)).显然如果我们把 ...
- BZOJ4951 Wf2017Money for Nothing(决策单调性)
按时间排序,显然可能存在于答案中的公司价格应该单调递减.然后就可以大胆猜想感性证明其有决策单调性.具体地,设f(i,j)表示第i个消费公司和第j个生产公司搭配的获利,f(i,j)=(ti-tj)*(c ...
- 4950: [Wf2017]Mission Improbable
4950: [Wf2017]Mission Improbable Time Limit: 1 Sec Memory Limit: 512 MBSubmit: 608 Solved: 222[Sub ...
- 【WF2017】Mission Improbable
http://www.lydsy.com/JudgeOnline/problem.php?id=4950 对于俯视图很好解决,把所有不是0的位置拿到剩1就可以了. 对于正视图与侧视图,稍微想一下也能发 ...
- 【刷题】BZOJ 4950 [Wf2017]Mission Improbable
Description 那是春日里一个天气晴朗的好日子,你准备去见见你的老朋友Patrick,也是你之前的犯罪同伙.Patrick在编程竞赛上豪赌输掉了一大笔钱,所以他需要再干一票.为此他需要你的帮助 ...
- 【bzoj4952】[Wf2017]Need for Speed 二分
题目描述 已知$\sum\limits_{i=1}^n\frac{d_i}{s_i+c}=t$,求$c$ $(d_i>0,s_i+c>0)$ 输入 第一行包含两个整数n(1≤n≤1000) ...
- 【bzoj4950】【 [Wf2017]Mission Improbable】贪心+二分图匹配
(上不了p站我要死了,侵权度娘背锅) Description 那是春日里一个天气晴朗的好日子,你准备去见见你的老朋友Patrick,也是你之前的犯罪同伙.Patrick在编程竞赛 上豪赌输掉了一大笔钱 ...
- bzoj 4951: [Wf2017]Money for Nothing【分治】
参考:https://blog.csdn.net/herobrine_tkj/article/details/78404426?locationNum=8&fps=1 为什么从1开始存就挂了, ...
- bzoj4950: [Wf2017]Mission Improbable
跟着靖靖做题%%%%% 这题一看就觉得和之前的某场模拟赛的一道题很像,找假如某行某列的最大值一样的就可以只堆一个,跑匈牙利就行 一开始以为箱子不能移动-_-! 然后有个坑,大家都知道当这个位置有箱子就 ...
随机推荐
- POJ3258【二分】
题意: 问一个河岸,两岸之间有笔直的n块石头,然后拔起(也可以施展魔法)m个石块,假设两岸也是石块,求处理过的石块的最小距离的最大. 思路: 他让我们求移开m个石块,无非是在n+2-m(已经把两岸看成 ...
- 浅谈欧拉函数 By cellur925
1.某神犇Blog 学了三遍的 欧拉函数φ--DEADFISH7 2.我要做一些补充o(* ̄▽ ̄*)o $φ(1)=1$: 公式有两种形式,一种有太多除法,实际可能会慢些.通用 对于任意$n$> ...
- Beta版本冲刺第二天!
该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 作业地址:https://edu.cnblogs.com/c ...
- Python 基础知识(5)
1:引用 当我们把一个变量给另一个变量赋值的时候,不是把A变量中的值给B一份,而是把A变量中的地址给了B,这就是引用.任何牵扯到等号赋值的地方,统统都是引用. a = 100 b = a id(a) ...
- sh 脚本报错
sh 脚本报错 思路如下: 1.建议按照手工方式运行该脚本. 2.加入-x 方式查看脚本的输出.
- img 标签访问图片返回403forbidden
做百度编辑器时,从秀米复制过来的文档,图片不无法加载,返回403的错 解决办法 解决这个问题只需要在头部添加一个meta <meta name="referrer" cont ...
- AJPFX总结抽象类和接口的区别
/* * 抽象类和接口的区别 * 1.成员的区别 * ...
- Spring源码:Spring IoC容器加载过程(1)
Spring源码版本:4.3.23.RELEASE 一.加载过程概览 Spring容器加载过程可以在org.springframework.context.support.AbstractApplic ...
- logging模块进阶2
1.两种级别设置: 全局级别:生成logger对象后设置的级别 局部级别:生成handler对象设置的级别 我们都知道输出的级别不能低于设定的级别,那么全局级别和局部级别哪一个对输出产生影响? 经过多 ...
- 洛谷P2765 魔术球问题(贪心 最大流)
题意 已经很简洁了吧. 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球. (1)每次只能在某根柱子的最上面放球. (2)在同一根柱子中,任何2个相邻球的编号之和为完全 ...