*LOJ#6227. 「网络流 24 题」最长k可重线段集问题
$n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长。
横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用(-长度)的边;点$x$向点$x+1$连一条容量$k$费用0的边。这里的$k$边限制的是直线上其他不经过这里的地方。
这里有个trick就是有与$x$轴垂直的线段。直接判掉会wa。为此把坐标扩大两倍,如果$l=r$那么$r++$否则$l++$,相当于把一个点拆成两个。
*LOJ#6227. 「网络流 24 题」最长k可重线段集问题的更多相关文章
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...
- 【网络流24题】最长k可重线段集(费用流)
[网络流24题]最长k可重线段集(费用流) 题面 Cogs的数据有问题 Loj 洛谷 题解 这道题和最长k可重区间集没有区别 只不过费用额外计算一下 但是,还是有一点要注意的地方 这里可以是一条垂直的 ...
- 网络流24题之最长k可重线段集问题
对于每个线段拆成两个点,如同之前一样建图,由于可能出现垂直于x轴的 所以建图由i指向i~ 继续最小费用最大流 By:大奕哥 #include<bits/stdc++.h> using na ...
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
随机推荐
- Java代理设计模式(Proxy)的四种具体实现:静态代理和动态代理
面试问题:Java里的代理设计模式(Proxy Design Pattern)一共有几种实现方式?这个题目很像孔乙己问"茴香豆的茴字有哪几种写法?" 所谓代理模式,是指客户端(Cl ...
- js 判断是什么浏览器、是否为谷歌浏览器
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta http ...
- IE6 bug总结
IE6bug总结: 1.双边距bug产生原因 margin的方向与浮动的方向相同 解决方法: 浮动的元素身上加 display:inline; ---------------------------- ...
- Vue和SuperSlide做轮播效果
使用这个插件做轮播需要的js应该知道,就是vue.js和jquery.SuperSlide.2.1.1.js 下载地址: vue:https://vuejs.org/js/vue.js 这里直接Ctr ...
- 如何解决webpack中css背景图片的绝对地址
在项目开发中,一般写相对路径是没有问题的,但是在项目比较大的情况下,我的scss文件可能为了方便管理,会放在不同的文件夹下,有的可能又不需要放在文件夹下,比如我的scss文件结构如下: module ...
- spring中常用的注解
使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<context:component-scan base-package ...
- Bootstrap select(选择列表)
当您想让用户从多个选项中进行选择,但是默认情况下只能选择一个选项,则使用选择框 1.使用<select>展示列表选项 2.使用multiple="multiple"允许 ...
- hihoCoder-1089-Floyd
我们读入的时候,要考虑重边的问题,我们只取边的最小值就可以了. #include <cstdio> #include <cstring> const int INF = 0x3 ...
- RabbitMQ 初体验
概述 RabbitMQ是一款消息队列中间件.他提供了几乎覆盖所有语言的SDK与文档,简直强大的不的了.要详细的去了解学习RabbitMQ,我建议还是看官方文档吧.http://www.rabbitmq ...
- css3如何实现click后页面过渡滚动到顶部
var getTop = document.getElementById("get-top"); var head = document.getElementById(" ...