[JSOI2007] 祖玛 (区间DP)
题目描述
这是一个流行在Jsoi的游戏,名称为祖玛。
精致细腻的背景,外加神秘的印加音乐衬托,彷佛置身在古老的国度里面,进行一个神秘的游戏——这就是著名的祖玛游戏。祖玛游戏的主角是一只石青蛙,石青蛙会吐出各种颜色的珠子,珠子造型美丽,并且有着神秘的色彩。
环绕着石青蛙的是载着珠子的轨道,各种颜色的珠子会沿着轨道往前滑动,石青蛙必需遏止珠子们滚进去轨道终点的洞里头,如何减少珠子呢?就得要靠石青蛙吐出的珠子与轨道上的珠子相结合,颜色相同者即可以消失得分!直到轨道上的珠子通通都被清干净为止。 或许你并不了解祖玛游戏。没关系。这里我们介绍一个简单版本的祖玛游戏规则。一条通道中有一些玻璃珠,每个珠子有各自的颜色,如图1所示。玩家可以做的是选择一种颜色的珠子(注意:颜色可以任选,这与真实游戏是不同的)射入某个位置。
图1 图2中玩家选择一颗蓝色珠子,射入图示的位置,于是得到一个图3的局面。
图2 图3 当玩家射入一颗珠子后,如果射入的珠子与其他珠子组成了三颗以上连续相同颜色的珠子,这些珠子就会消失。例如,将一颗白色珠子射入图4中的位置,就会产生三颗颜色相同的白色珠子。这三颗珠子就会消失,于是得到图5的局面。
图4 图5 需要注意的一点是,图4中的三颗连续的黄色珠子不会消失,因为并没有珠子射入其中。 珠子的消失还会产生连锁反应。当一串连续相同颜色的珠子消失后,如果消失位置左右的珠子颜色相同,并且长度大于2,则可以继续消失。例如,图6中,射入一颗红色珠子后,产生了三颗连续的红色珠子。当红色珠子消失后,它左右都是白色的珠子,并且一共有四颗,于是白色珠子也消失了。之后,消失位置的左右都是蓝色珠子,共有三颗,于是蓝色珠子也消失。最终得到图7的状态。注意,图7中的三颗黄色珠子不会消失,因为蓝色珠子消失的位置一边是紫色珠子,另一边是黄色珠子,颜色不同。
图6 图7 除了上述的情况,没有其他的方法可以消去珠子。 现在,我们有一排珠子,需要你去消除。对于每一轮,你可以自由选择不同颜色的珠子,射入任意的位置。你的任务是射出最少的珠子,将全部珠子消去。
Solution
这是本蒟蒻博主自己想出来的第一道省选DP.想了一整天啊 QAQ...
这道题的主要难度是对题意的理解,即要找出这个题目的最关键特点.
通过题面可以知道,在一个序列中,如果有连续的一段颜色,那么无论怎么样,在最终合并的时候,它们都不会被分开的.
然后又鉴于它颜色的种类可能很大,开不下那么大的数组,所以我们就在DP前需要进行一次预处理.
一个是把颜色离散(这个其实也没必要),第二个就是要把所有连续的颜色相同的点都处理在一起,形成一个新的序列.
同时在这个新的序列中我们要记录每一个新的元素包含的节点个数,这是为了满足游戏规则里的至少要三个才能合并的条件.
然后这之后就是一个较为简单的区间DP
枚举i j 和断点 k.
然后这个时候有两种情况可以合并:
1. 直接 i -> k 和 k+1 -> j 两段合并.
2. 中间的先合并,然后两边合并,连锁反应.
Ps: 原题里有一个比较坑的数据点 在讨论版里面. 所以有特判.
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=; int n,len,f[maxn][maxn],pd[maxn];
int c[maxn],num,a[maxn],col[maxn],newt[maxn]; void pre()
{
sort(a+,a+n+);
for(int i=;i<=n;)
{
int xx=a[i],flag=; col[++num]=xx;
while(a[i+flag]==xx) flag++;
i+=flag;
}
for(int i=;i<=n;i++)
for(int j=;j<=num;j++)
if(c[i]==col[j])
{c[i]=j;break;}
for(int i=;i<=n;)
{
int xx=c[i]; int flag=;
while(c[i+flag]==xx) flag++;
newt[++len]=xx; pd[len]=flag;
f[len][len]=(flag!=)?:; i+=flag;
}
} int main()
{
scanf("%d",&n);
if(n==){cout<<<<endl;return ;}
for(int i=;i<=n;i++)
scanf("%d",&a[i]),c[i]=a[i];
memset(f,0x7f,sizeof(f));
pre();
for (int i=;i<=len-;++i)
for (int j=;j<=len-i;++j)
{
if (newt[j]==newt[j+i])
if (i==) f[j][j+i]=pd[j]+pd[j+i]>=?:;
else f[j][j+i]=f[j+][j+i-]+(pd[j]+pd[j+i]>=?:);
for (int k=j;k<j+i;++k)
f[j][j+i]=min(f[j][j+i],f[j][k]+f[k+][j+i]);
}
cout<<f[][len]<<endl;
}
[JSOI2007] 祖玛 (区间DP)的更多相关文章
- [BZOJ 1032][JSOI 2007]祖玛 题解(区间DP)
[BZOJ 1032][JSOI 2007]祖玛 Description https://www.lydsy.com/JudgeOnline/problem.php?id=1032 Solution ...
- BZOJ.1032.[JSOI2007]祖码(区间DP)
题目链接 BZOJ 洛谷 AC代码: 区间DP,f[i][j]表示消掉i~j需要的最少珠子数. 先把相邻的相同颜色的珠子合并起来. 枚举方法一样,处理一下端点可以碰撞消除的情况就行. 当然合并会出现问 ...
- hdu6212 祖玛(区间DP)
题意 有一个长度为n的01串,我们可以在某个地方插入一个0或者1,那么如果有连续颜色相同的>=3个,那么这段就会消去,两边的合拢.问将所有01串消去,最少需要插入多少个.(n<=200) ...
- LG2145 「JSOI2007」祖码 区间DP
问题描述 LG2145 题解 把颜色相同的一段看做一个点. 然后类似于合唱队区间DP即可. 但是这题好像出过一些情况,导致我包括题解区所有人需要特判最后一个点. \(\mathrm{Code}\) # ...
- 【BZOJ1032】[JSOI2007]祖玛(动态规划)
[BZOJ1032][JSOI2007]祖玛(动态规划) 题面 BZOJ 洛谷 题解 听说是道假题,假的原因是因为出题人可能没有考虑到祖玛的骚套路,比如可以先打几个球进去再一波消掉.也就是出题人基本默 ...
- 浅谈区间DP的解题时常见思路
一.区间DP解题时常见思路 如果题目中答案满足: 大的区间的答案可以由小的区间答案组合或加减得到 大的范围可以由小的范围代表 数据范围较小 我们这时可以考虑采用区间DP来解决. 那么常见的解法有两种: ...
- BZOJ 1032 JSOI 2007 祖码Zuma 区间DP
题目大意:依照祖玛的玩法(任意选颜色),给出一段区间.问最少用多少个球可以把全部颜色块都消除. 思路:把输入数据依照连续的块处理.保存成颜色和数量.然后用这个来DP.我们知道,一个单独的块须要两个同样 ...
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
随机推荐
- (七)maven之阿里云镜像提高jar下载速度
阿里云国内镜像,提高jar包下载速度 镜像 maven默认会从中央仓库下载包,但是下载过几次就知道,下载速度非常慢.镜像就相当于是中央仓库的一个副本,内容和中央仓库完全一样,而且同时也能保证下载速度, ...
- 网络大牛如何回答Chrome的15个刁钻面试题?
(内容来自网络整理) Google的面试题在刁钻古怪方面相当出名,甚至已经有些被神化的味道.这里整理出15道Google面试题并一一给出了网络大牛的答案,其中不少都是流传很广的. 第1题:让你清洗西雅 ...
- OC 导入类 #import和@class 区别
objective-c中#import和@class的区别 在Objective-C中,可以使用#import和@class来引用别的类型, 但是你知道两者有什么区别吗? @class叫做forwar ...
- 树形DP 统计树中长度为K的路径数量——Distance in Tree
一.问题描述 给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500). 二.解题思路 设d[i][k]表示以i为根节点长度为k的路 ...
- webpack 使用总结
参考:http://www.ferecord.com/webpack-summary.html#base64 写的比较详细了
- Java中的线程--Lock和Condition实现线程同步通信
随着学习的深入,我接触了更多之前没有接触到的知识,对线程间的同步通信有了更多的认识,之前已经学习过synchronized 实现线程间同步通信,今天来学习更多的--Lock,GO!!! 一.初时Loc ...
- [LUOGU] P1063 能量项链
题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...
- [图文][提供可行性脚本] CentOS 7 Fencing+Pacemaker三节点搭建高可用集群
实验说明: 实验环境: 宿主机系统 :Fedora 28 WorkStation 虚拟机管理器 :Virt-Manager 1.5.1 虚拟机配置 :ha1 CentOS 7.2 1511 ...
- 【css】背景图片填充
background: url(../img/icon_img/blue_gou.png) 0 0 no-repeat; background-size: cover; border-color: # ...
- 降维算法-PCA主成分分析
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...