【Luogu】P1586四方定理(DP)
此题使用DP。设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有
f[i][j]=∑f[i-k*k][j-1]
但是这样会有重复情况。所以先枚举k,再枚举i和j。
代码如下
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<cctype>
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long f[][]={};
int main(){
int T=read();
for(int k=;k*k<=;++k)
for(int i=k*k;i<=;++i)
for(int j=;j<=;++j)
f[i][j]+=f[i-k*k][j-];
while(T--){
int n=read();
printf("%lld\n",f[n][]+f[n][]+f[n][]+f[n][]);
}
return ;
}
【Luogu】P1586四方定理(DP)的更多相关文章
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- 四方定理(递归) --java
四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...
- java实现第二届蓝桥杯四方定理
四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...
- 【DP】【P1586】四方定理
传送门 Description Input 第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数 Output 对于每个n输出一行,为方案个数 Sample Input Sample ...
随机推荐
- linux winqq 不能输入中文的解决办法
wineqq的运行脚本是/usr/share/deepinwine/qqintl/wine-qqintl编辑此脚本,在最开始加入: export XMODIFIERS="@im=fcitx& ...
- 中国区 Azure 应用程序开发说明
1.文档简介 微软公司为其在境外由微软运营的 Azure 服务(以下简称为 “境外 Azure”),创建和部署云应用程序,提供了相应工具. 在中国,由世纪互联运营的 Microsoft Azure ( ...
- LR中订单流程脚本
Action(){ /* 主流程:登录->下订单->支付订单->获取订单列表 定义事物 1)登录 2)下订单 3)支付订单 4)获取订单列表 接口为:application/json ...
- Git服务器和Git权限管理应用GITLAB安装方法
首先声明,本文使用的服务器是Centos 6.5,在其他版本的LINUX上运行不保证也是一样的效果. 顺便说下 来波点赞 来波收藏和推荐 有什么问题 我会一直关注评论的 想放一张最终图吧 其中主要涉 ...
- (二)maven之项目结构
我们可以看一下Maven项目的大致结构: 项目结构: src/main/java:java源代码文件目录. src/main/resources:资源库,会自动赋值到classes目录里,像 ...
- Android(java)学习笔记146:网页源码查看器(Handler消息机制)
1.项目框架图: 2.首先是布局文件activity_main.xml: <LinearLayout xmlns:android="http://schemas.android.com ...
- 安装pycharm 2018.3 Professional Edition
1.下载pycharm 2018.3 Professional 2.下载破解补丁,Gitee仓库 或 直接下载(Direct download link) ,并放到pycharm目录下的\bin目录( ...
- vue父组件获取子组件页面的数组 以城市三级联动为例
父组件调用子组件 <Cselect ref="registerAddress"></Cselect> import Cselect from '../../ ...
- 51nod 1265 四点共面——计算几何
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1265 以其中某一点向其它三点连向量,若四点共面,这三个向量定义的平行六面体 ...
- OS复习
提纲 一 操作系统的定义,各章节名词定义. 分时多道- OS四大特征,五大功能. 二 进程 创建终止挂起激活 PCB 原语:创建终止挂起激活唤醒 互斥和同步,临界资源,临界区 信号量的基础概念,受保护 ...