题目链接

此题使用DP。设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有

f[i][j]=∑f[i-k*k][j-1]

但是这样会有重复情况。所以先枚举k,再枚举i和j。

代码如下

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<cctype>
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long f[][]={};
int main(){
int T=read();
for(int k=;k*k<=;++k)
for(int i=k*k;i<=;++i)
for(int j=;j<=;++j)
f[i][j]+=f[i-k*k][j-];
while(T--){
int n=read();
printf("%lld\n",f[n][]+f[n][]+f[n][]+f[n][]);
}
return ;
}

【Luogu】P1586四方定理(DP)的更多相关文章

  1. luogu P1586 四方定理(背包)

    题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...

  2. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  3. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  4. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  5. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  6. 洛谷p1586四方定理题解

    题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...

  7. 四方定理(递归) --java

    四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...

  8. java实现第二届蓝桥杯四方定理

    四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...

  9. 【DP】【P1586】四方定理

    传送门 Description Input 第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数 Output 对于每个n输出一行,为方案个数 Sample Input Sample ...

随机推荐

  1. maven 3.3.9版本下载地址

    请使用迅雷下载 http://www-us.apache.org/dist/maven/maven-3/3.3.9/binaries/apache-maven-3.3.9-bin.zip

  2. Spring Boot: Spring Starter Project

    好久没有创建过新项目,楼主发现Spring Boot项目创建失败了!!! 其中有两处错误: [图一不知道是哪里错,果断删掉重输入一次.成功进入下一步  其余步骤也没有错误,然而  最后一步失败了,如图 ...

  3. (九)mybatis之生命周期

    生命周期   SqlSessionFactoryBuilder   SqlSessionFactoryBuilder的作用就是生成SqlSessionFactory对象,是一个构建器.所以我们一旦构建 ...

  4. Stream.iterate方法与UnaryOperator

    前提:本人在翻看<Java核心技术II>的时候在p17的时候发现一段代码不是很明白.不知道为什么就输出了1,2,3,4,5,6,7,8,9,10,...也不知道n-n.add(BigInt ...

  5. spring (由Rod Johnson创建的一个开源框架)

    你可能正在想“Spring不过是另外一个的framework”.当已经有许多开放源代码(和专有)J2EEframework时,我们为什么还需要Spring Framework? Spring是独特的, ...

  6. redis分布式共享锁模拟抢单的实现

    本篇内容主要讲解的是redis分布式锁,并结合模拟抢单的场景来使用,内容节点如下: jedis的nx生成锁 如何删除锁 模拟抢单动作 1.jedis的nx生成锁 对于分布式锁的生成通常需要注意如下几个 ...

  7. "Uncaught SyntaxError: Unexpected token <"错误完美解决

    今天写代码的时候发现了"Uncaught SyntaxError: Unexpected token <" <html>的js错误,而且还是html的第一行,我就 ...

  8. DS博客作业08--课程总结

    DS博客作业08--课程总结 1.当初你是如何做出选择计算机专业的决定的? 1.1 经过一年学习,你的看法改变了么,为什么? 1.2 你觉得计算机是你喜欢的领域吗,它是你擅长的领域吗? 为什么? 1. ...

  9. vc生产垃圾清理

    @echo off echo 清除所有obj pch idb pdb ncb opt plg res sbr ilk suo文件,请稍等...... pause del /f /s /q .\*.ob ...

  10. windows使用文件服务器搭建Git服务器

    背景: 1.windows下搭建git服务器. 2.git服务器搭建在局域网文件共享区中. 3.没有复杂的权限控制,文件共享区都有访问权限. 步骤: 1.文件共享区中创建git远程仓库. 2.本地克隆 ...