题目可以表述成:给定一个无向图G,每次删除它的一个点和与点相关的边集,每次询问该操作后图G的连通度(连通分量的个数)。和上一题一样都是考察逆向思维,虽然删除点的做法不会,但是每次加点后询问连通度却是并查集的经典用法,所以答案可以逆过来推,具体做的时候每次加入一个点,将所有和这个点有边相连的点集合并,然后输出当前有多少个集合。细节部分需要注意的是由于点的数量十分庞大,邻接表是十分有必要的

#include<iostream>

#include<cstdio>

#include <math.h>

using namespace std;

intfather[400001]={0},next[400001]={0},point[400001]={0},root[400001]={0},now=0;

bool h[400001]={false};

void add(int a,int b)

{

now++;

point[now]=a;

next[now]=root[b];

root[b]=now;

}

int find(int v)

{

if(v==father[v])return v;

return father[v]=find(father[v]);

}

void unio(int a,int b)

{

father[find(a)]=father[find(b)];

}

int main()

{

int n,m,t,x[400001]={0},y[400001]={0},k,a[400001]={0},ans[400001]={0},j;

scanf("%d%d",&n,&m);

for (int i=1;i<=n;i++)father[i]=i;//初始化并查集

for (int i=1;i<=m;i++)

{

scanf("%d%d",&x[i],&y[i]);

add(x[i],y[i]);

add(y[i],x[i]);//邻接表

}

scanf("%d",&k);

t=n-k;

for (int i=1;i<=k;i++)

{

scanf("%d",&a[k-i+1]);

h[a[k-i+1]]=true;

}

for (int i=1;i<=m;i++)

if((h[x[i]]==false)&&(h[y[i]]==false)&&(find(x[i])!=find(y[i])))

{

unio(x[i],y[i]);t--;

}

ans[0]=t;

for (int i=1;i<=k;i++)

{

t++;

h[a[i]]=false;

j=root[a[i]];

while (j!=0)

{

if ( find(point[j])!=find(a[i]) && (h[point[j]]==false) )

{

unio(point[j],a[i]);

t--;

}

j=next[j];

}

ans[i]=t;

}

for (inti=k+1;i>=1;i--)printf("%d\n",ans[i-1]);

return 0;

}

BZOJ 1015: [JSOI2008]星球大战starwar【并查集】的更多相关文章

  1. BZOJ 1015: [JSOI2008]星球大战starwar 并查集

    1015: [JSOI2008]星球大战starwar Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝 ...

  2. BZOJ1015[JSOI2008]星球大战starwar[并查集]

    1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 5253  Solved: 2395[Submit ...

  3. BZOJ 1015 [JSOI2008]星球大战starwar

    1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 3551  Solved: 1581[Submit ...

  4. bzoj 1015: [JSOI2008]星球大战starwar (逆向思维+并查集)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1015 思路: 题目是要我们对当前图拆掉k个点,问,每拆一个点后图中有多少个联通块,我们可以逆 ...

  5. 1015. [JSOI2008]星球大战【并查集】

    Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的 机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通 ...

  6. BZOJ 1015: [JSOI2008]星球大战starwar(并查集求连通块+离线处理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1015 题意: 思路:好题啊!!! 这道题目需要离线处理,先把所有要删的点给保存下来,然后逆序加点,这 ...

  7. BZOJ 1015 JSOI2008 星球大战 starwar 并检查集合

    标题效果:给定一个无向图.联通谋求块的数目,以及k一个点的破坏后每次:联通,块的数目 侧面和摧毁的地步全记录,我们可以做相反的. 需要注意的是该点不能算作破坏联通块 #include<cstdi ...

  8. [洛谷P1197/BZOJ1015][JSOI2008]星球大战Starwar - 并查集,离线,联通块

    Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过 ...

  9. bzoj1015: [JSOI2008]星球大战starwar 并查集+离线处理

    题目传送门 这道题可以改为离线处理 倒着找答案 这样删点就变成加点了 有了这个思想题目就很好写了哇 23333 #include<cstdio> #include<cstring&g ...

随机推荐

  1. SqlServer表和excel数据批量复制方法

    SqlServer表和excel数据批量复制方法 一.SqlServer表数据复制到excel方法: 1.新建查询,用sql语句把表数据读出来 2.然后,选择数据,右键“复制”(如果需要表字段名称,则 ...

  2. tomcat 发布本地文件

    应用场景,通过web,jsp访问本地mouse文件夹的静态文件 通过修改tomcat配置文件server.xml <!--在Host标签下加入Context标签,path指的是服务器url请求地 ...

  3. windows 操作系统种类

    @hcy 敬请访问:http://blog.sina.com.cn/iihcy Microsoft公司从1983年开始研制Windows系统,最初的研制目标是在MS-DOS的基础上提供一个多任务的图形 ...

  4. 新建maven的pom.xml第一行出错的解决思路

    前言:博主在想要用maven创建项目的时候,忘记之前已经安装过maven了,所以再安装了另一个版本的maven,导致在pom.xml的第一行总是显示某一个jar的zip文件读取不出来. 在网上找了很多 ...

  5. vue实现微信分享朋友圈和朋友功能

    vue实现微信分享朋友圈和朋友功能 A-A+ haibao  2018-10-25  11  21  6.2 k  百度已收录  前端开发 温馨提示:本文共3536个字,读完预计9分钟. 这两天在开发 ...

  6. POJ2402 Palindrome Numbers第K个回文数——找规律

    问题 给一个数k,给出第k个回文数  链接 题解 打表找规律,详见https://www.cnblogs.com/lfri/p/10459982.html,差别仅在于这里从1数起. AC代码 #inc ...

  7. CSS - position属性小结

    Relative: 属于文档流,针对自身进行偏移: Absolute: 脱离文档流,针对最近的定位元素进行偏移,如果没有,则针对根元素,即body标签尽心偏移: Fixed: 和absolute基本一 ...

  8. shell脚本调试打印日志问题

    shell脚本调试打印日志问题 1. 需求 我们在编写脚本的时候,有时候需要做调试,便于我们定位问题,有时候等脚本上线之后,我们需要保留脚本执行过程中的记录.便于我们在出问题的时候,定位问题. 2. ...

  9. 个人总结NDIS中NDIS_PACKET,NDIS_BUFFER的关系

    // // NDIS_PACKET结构的定义 // typedef struct _NDIS_PACKET { NDIS_PACKET_PRIVATE Private; //这个其实是一个链表结构,P ...

  10. HDU-1217-Arbitrage(SPFA)

    这题和以往的求最短路的题目略微有点不一样,以往求的都是最小的,这题求的是大的,而且还是乘法. 我们求的时候初始化的时候就要进行相反的初始化了,把它们初始化为0,然后比较大的就更新. 因为这题的点少边多 ...