Vitaly and Cycle

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

After Vitaly was expelled from the university, he became interested in the graph theory.

Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.

Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.

Two ways to add edges to the graph are considered equal if they have the same sets of added edges.

Since Vitaly does not study at the university, he asked you to help him with this task.

Input

The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.

Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.

It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.

Output

Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.

Examples
Input
4 4
1 2
1 3
4 2
4 3
Output
1 2
Input
3 3
1 2
2 3
3 1
Output
0 1
Input
3 0
Output
3 1
Note

The simple cycle is a cycle that doesn't contain any vertex twice.

题意:给你一个n个节点m条边的图 问你是不是存在一个奇数环(就是环中的节点个数为奇数个)

如果存在输出0 1

如果不存在 输出最少加多少条边使得存在一个奇数环 并输出他的方案数

当一个图是二分图的话  他是一定不存在奇数环的  反之  他就一定存在奇数环

0 1染色判断是不是二分图

如果是二分图的话 也许是多个联通块  所以我们只需要统计各个联通块中0 1中的个数 a[i] b[i]  答案就是各个联通块的 a(a-1)/2+b(b-1)/2的和

当然 有两种情况是要讨论的  m=0 不存在边  所以就是任意三个点可以组成一个奇数环 边就是加3条

还是一种已经所有联通块中节点数最多就只有两个  答案就是 (n-2)*m

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<string.h>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<cmath>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const double PI=acos(-1.0);
const double eps=0.0000000001;
const int N=+;
int head[N];
int tot;
struct node{
int to,next;
}edge[N<<];
int color[N];
int vis[N];
int a[N];
int b[N];
int num[N];
void init(){
memset(head,-,sizeof(head));
tot=;
}
void add(int u,int v){
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
int DFS(int u,int t){
if(vis[u]==){
if(color[u]==)a[t]++;
if(color[u]==)b[t]++;
num[t]++;
}
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(color[v]==){
color[v]=color[u]^;
if(DFS(v,t)==)return ;
}
else if(color[u]==color[v]){
return ;
}
}
return ;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
init();
int u,v;
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
if(m==){
cout<<<<" "<<(ll)n*(n-)*(n-)/<<endl;return ;
}
memset(color,,sizeof(color));
memset(vis,,sizeof(vis));
int flag=;
int t=;
for(int i=;i<=n;i++){
if(color[i]==&&vis[i]==){
if(DFS(i,++t)==){
color[i]=;
flag=;
break;
}
}
}/*
for(int i=1;i<=n;i++){
cout<<color[i]<<" "<<endl;
}
for(int i=1;i<=t;i++){
cout<<a[i]<<" "<<b[i]<<" "<<num[i]<<endl;
}*/
if(flag==){
cout<<<<" "<<<<endl;return ;
}
ll ans=;
flag=;
for(int i=;i<=t;i++){
if(num[i]<=){
flag++;continue;
}
ans=ans+(ll)a[i]*(a[i]-)/+(ll)b[i]*(b[i]-)/;
//cout<<ans<<endl;
}
if(flag!=t)cout<<<<" "<<ans<<endl;
else{
cout<<<<" "<<(ll)m*(n-)<<endl;
} }

CodeForces - 557D Vitaly and Cycle(二分图)的更多相关文章

  1. codeforces 557D. Vitaly and Cycle 二分图染色

    题目链接 n个点, m条边, 问最少加几条边可以出现一个奇环, 在这种情况下, 有多少种加边的方式. 具体看代码解释 #include<bits/stdc++.h> using names ...

  2. codeforces 557D Vitaly and Cycle

    题意简述 给定一个图 求至少添加多少条边使得它存在奇环 并求出添加的方案数 (注意不考虑自环) ---------------------------------------------------- ...

  3. Codeforces Round #311 (Div. 2) D - Vitaly and Cycle(二分图染色应用)

    http://www.cnblogs.com/wenruo/p/4959509.html 给一个图(不一定是连通图,无重边和自环),求练成一个长度为奇数的环最小需要加几条边,和加最少边的方案数. 很容 ...

  4. codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图

    D. Vitaly and Cycle       time limit per test 1 second memory limit per test 256 megabytes input sta ...

  5. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 图论

    D. Vitaly and Cycle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...

  6. Codeforces Round #311 (Div. 2) D - Vitaly and Cycle

    D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环

    题目链接: 点这里 题目 D. Vitaly and Cycle time limit per test1 second memory limit per test256 megabytes inpu ...

  8. 【34.57%】【codeforces 557D】Vitaly and Cycle

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. CodeForces 173B Chamber of Secrets 二分图+最短路

    题目链接: http://codeforces.com/problemset/problem/173/B 题意: 给你一个n*m的地图,现在有一束激光从左上角往左边射出,每遇到‘#’,你可以选择光线往 ...

随机推荐

  1. ThinkPHP---rbac权限管理

    [一]概论 (1)简介 rbac(role based access controal),全称基于用户组/角色的权限控制. (2)概况 目前来说,一般项目有两种权限管理方式①传统方式:②rbac方式. ...

  2. P1036 选数(DFS)

    题目 https://www.luogu.org/problemnew/show/P1036 思路 搜索,使用递归实现dfs,所有数字遍历一遍,当取遍所有数组的index(扫了一遍,并非一定是选取了) ...

  3. java学习日志---File实例:实现复制整个文件夹、解决listFiles()为null问题

    需求:将H盘下的所有文件复制到H:/All 文件夹中 思路:使用递归遍历整个目标目录 传入目标路径 判断是否是文件夹 是:调用listFiles()方法,得到File数组,重点内容接着执行1 否:复制 ...

  4. illuminate/routing 源码分析之注册路由

    我们知道,在 Laravel 世界里,外界传进来一个 Request 时,会被 Kernel 处理并返回给外界一个 Response.Kernel 在处理 Request 时,会调用 illumina ...

  5. vue-cli中src/main.js 的作用

    // The Vue build version to load with the `import` command // (runtime-only or standalone) has been ...

  6. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  7. Unity对象的所有组件深拷贝与粘贴

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/51454847 作者:car ...

  8. 【02】bootstrap起步

    起步 简要介绍 Bootstrap,以及如何下载.使用,还有基本模版和案例,等等. 下载 Bootstrap (当前版本 v3.3.5)提供以下几种方式帮你快速上手,每一种方式针对具有不同技能等级的开 ...

  9. Go语言语法说明

    Go语言语法说明 go语言中的go func(){}() 表示以并发的方式调用匿名函数func 深入讲解Go语言中函数new与make的使用和区别 前言 本文主要给大家介绍了Go语言中函数new与ma ...

  10. POJ 1019 数学题

    #include <cstdio> #include <cstring> using namespace std; ]; //sum[i]表示尾数为i的组最大可达到的数字个数 ...