poj3352
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 7980 | Accepted: 4014 |
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1 10 12 1 2 1 3 1 4 2 5 2 6 5 6 3 7 3 8 7 8 4 9 4 10 9 10 Sample Input 2 3 3 1 2 2 3 1 3
Sample Output
Output for Sample Input 1
2
Output for Sample Input 2
0
题意:给出一个图求出至少添加多少边才能将其变为一个双联通图。
sl:缩点之后得到一个DAG,求出DAG图所有的叶子节点,可以通过low数组记录下每个节点所属的联通分量,然后
枚举每个节点的子节点low值是不是一样,不一样则其中一个节点的入度加1然后就是图论的小知识点了。
1 #include<cstdio>
2 #include<cstring>
3 #include<algorithm>
4 #include<vector>
5 using namespace std;
6 const int MAX = ;
7 vector<int> G[MAX];
8 int pre[MAX],low[MAX],deg[MAX];
9 int dfs_clock;
void add_edge(int from,int to)
{
G[from].push_back(to);
G[to].push_back(from);
}
int dfs(int u,int fa)
{
int lowu=pre[u]=++dfs_clock;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
int lowv=dfs(v,u);
lowu=min(lowu,lowv);
}
else if(pre[u]>pre[v]&&v!=fa)
{
lowu=min(lowu,pre[v]);
}
}
low[u]=lowu;
// printf("%d\n",lowu);
return lowu;
}
void solve(int n)
{
memset(pre,,sizeof(pre));
memset(low,,sizeof(low));
memset(deg,,sizeof(deg)); int ans=;
dfs(,-);
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
// printf("!!%d %d\n",low[i],low[G[i][j]]);
if(low[i]!=low[G[i][j]])
deg[low[i]]++;
}
}
for(int i=;i<=n;i++)
if(deg[i]==) ans++;
ans=(ans+)>>;
printf("%d\n",ans);
}
int main()
{
int n,m; int a,b;
while(scanf("%d %d",&n,&m)==)
{
for(int i=;i<=n;i++) G[i].clear();
dfs_clock=;
for(int i=;i<m;i++)
{
scanf("%d %d",&a,&b);
add_edge(a,b);
}
solve(n);
}
return ;
}
poj3352的更多相关文章
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- 【POJ3352】Road Construction(边双联通分量)
题意:给一个无向图,问最少添加多少条边后能使整个图变成双连通分量. 思路:双连通分量缩点,缩点后给度为1的分量两两之间连边,要连(ans+1) div 2条 low[u]即为u所在的分量编号,flag ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- POJ3352 Road Construction(边双连通分量)
...
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- [POJ3352]Road Construction(缩点,割边,桥,环)
题目链接:http://poj.org/problem?id=3352 给一个图,问加多少条边可以干掉所有的桥. 先找环,然后缩点.标记对应环的度,接着找桥.写几个例子就能知道要添加的边数是桥的个数/ ...
- POJ3352 Road Construction 双连通分量+缩点
Road Construction Description It's almost summer time, and that means that it's almost summer constr ...
- poj3352添加多少条边可成为双向连通图
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13311 Accepted: 671 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- 边双联通问题求解(构造边双连通图)POJ3352(Road Construction)
题目链接:传送门 题目大意:给你一副无向图,问至少加多少条边使图成为边双联通图 题目思路:tarjan算法加缩点,缩点后求出度数为1的叶子节点个数,需要加边数为(leaf+1)/2 #include ...
随机推荐
- bzoj 4719: [Noip2016]天天爱跑步【树上差分+dfs】
长久以来的心理阴影?但是其实非常简单-- 预处理出deep和每组st的lca,在这里我简单粗暴的拿树剖爆算了 然后考虑对于一组s t lca来说,被这组贡献的观察员x当且仅当: x在s到lca的路径上 ...
- Extjs6 经典版 combo下拉框数据的使用及动态传参
Extjs的下拉框,在点击的时候会请求一次数据,我们可不可以在点击前就请求好数据,让用户体验更好呢?答案当然是肯定的.如果是公用的下拉框还可以传入不同参数请求不同数据. 第一步: 进入页面前首先加载s ...
- php做APP接口开发,接口的安全性
1.当用户登录APP时,使用https协议调用后台相关接口,服务器端根据用户名和密码时生成一个access_key,并将access_key保存在session(或者保存在redis)中,将生成的ac ...
- 洛谷 P2142 高精度减法(模板)
题目描述 高精度减法 输入输出格式 输入格式: 两个整数a,b(第二个可能比第一个大) 输出格式: 结果(是负数要输出负号) 输入输出样例 输入样例#1: 2 1 输出样例#1: 1 说明 20%数据 ...
- 题解报告:hdu 1015 Safecracker
Problem Description === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Kl ...
- magento后台开发学习笔记(入门实例向)
目的是做一个grid,参考博客http://www.sunzhenghua.com/magento-admin-module-development-part1-grid-forms-tabs-con ...
- python程序展现图片
突然想写一个python程序能够显示图片的 ,展示文字的已经实现了 现在就搞一搞这个吧 相信也是很简单 首先是放一张图片在e盘下面 等会程序打包的时候将会用到 就决定是你啦 皮卡丘: 然后就写代码吧:
- Android常见问题总结(二)
1.布局文件LinearLayout线性布局添加内容报错. 解决方法: 线性布局LinearLayout中包裹的元素多余1个需要添加android:orientation属性. 2.android 的 ...
- typeloadexception 方法实现中引用的声明不能是final方法
问题描述: 1. 修改了DVSNetClient项目,其依赖类库CameraDSP没有改动.CameraDSP_DVSNetClient.dll的版本编号和文件编号由1.0.0.0变为1.0.1.0. ...
- 【译】x86程序员手册26-7.5任务切换
7.5 Task Switching 任务切换 The 80386 switches execution to another task in any of four cases: 80386在以下四 ...