poj3352
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7980 | Accepted: 4014 |
Description
It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the roads on the tropical island paradise of Remote Island would like to repair and upgrade the various roads that lead between the various tourist attractions on the island.
The roads themselves are also rather interesting. Due to the strange customs of the island, the roads are arranged so that they never meet at intersections, but rather pass over or under each other using bridges and tunnels. In this way, each road runs between two specific tourist attractions, so that the tourists do not become irreparably lost.
Unfortunately, given the nature of the repairs and upgrades needed on each road, when the construction company works on a particular road, it is unusable in either direction. This could cause a problem if it becomes impossible to travel between two tourist attractions, even if the construction company works on only one road at any particular time.
So, the Road Department of Remote Island has decided to call upon your consulting services to help remedy this problem. It has been decided that new roads will have to be built between the various attractions in such a way that in the final configuration, if any one road is undergoing construction, it would still be possible to travel between any two tourist attractions using the remaining roads. Your task is to find the minimum number of new roads necessary.
Input
The first line of input will consist of positive integers n and r, separated by a space, where 3 ≤ n ≤ 1000 is the number of tourist attractions on the island, and 2 ≤ r ≤ 1000 is the number of roads. The tourist attractions are conveniently labelled from 1 to n. Each of the following r lines will consist of two integers, v and w, separated by a space, indicating that a road exists between the attractions labelled v and w. Note that you may travel in either direction down each road, and any pair of tourist attractions will have at most one road directly between them. Also, you are assured that in the current configuration, it is possible to travel between any two tourist attractions.
Output
One line, consisting of an integer, which gives the minimum number of roads that we need to add.
Sample Input
Sample Input 1 10 12 1 2 1 3 1 4 2 5 2 6 5 6 3 7 3 8 7 8 4 9 4 10 9 10 Sample Input 2 3 3 1 2 2 3 1 3
Sample Output
Output for Sample Input 1
2
Output for Sample Input 2
0
题意:给出一个图求出至少添加多少边才能将其变为一个双联通图。
sl:缩点之后得到一个DAG,求出DAG图所有的叶子节点,可以通过low数组记录下每个节点所属的联通分量,然后
枚举每个节点的子节点low值是不是一样,不一样则其中一个节点的入度加1然后就是图论的小知识点了。
1 #include<cstdio>
2 #include<cstring>
3 #include<algorithm>
4 #include<vector>
5 using namespace std;
6 const int MAX = ;
7 vector<int> G[MAX];
8 int pre[MAX],low[MAX],deg[MAX];
9 int dfs_clock;
void add_edge(int from,int to)
{
G[from].push_back(to);
G[to].push_back(from);
}
int dfs(int u,int fa)
{
int lowu=pre[u]=++dfs_clock;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!pre[v])
{
int lowv=dfs(v,u);
lowu=min(lowu,lowv);
}
else if(pre[u]>pre[v]&&v!=fa)
{
lowu=min(lowu,pre[v]);
}
}
low[u]=lowu;
// printf("%d\n",lowu);
return lowu;
}
void solve(int n)
{
memset(pre,,sizeof(pre));
memset(low,,sizeof(low));
memset(deg,,sizeof(deg)); int ans=;
dfs(,-);
for(int i=;i<=n;i++)
{
for(int j=;j<G[i].size();j++)
{
// printf("!!%d %d\n",low[i],low[G[i][j]]);
if(low[i]!=low[G[i][j]])
deg[low[i]]++;
}
}
for(int i=;i<=n;i++)
if(deg[i]==) ans++;
ans=(ans+)>>;
printf("%d\n",ans);
}
int main()
{
int n,m; int a,b;
while(scanf("%d %d",&n,&m)==)
{
for(int i=;i<=n;i++) G[i].clear();
dfs_clock=;
for(int i=;i<m;i++)
{
scanf("%d %d",&a,&b);
add_edge(a,b);
}
solve(n);
}
return ;
}
poj3352的更多相关文章
- [POJ3352]Road Construction
[POJ3352]Road Construction 试题描述 It's almost summer time, and that means that it's almost summer cons ...
- 【POJ3352】Road Construction(边双联通分量)
题意:给一个无向图,问最少添加多少条边后能使整个图变成双连通分量. 思路:双连通分量缩点,缩点后给度为1的分量两两之间连边,要连(ans+1) div 2条 low[u]即为u所在的分量编号,flag ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- POJ3352 Road Construction(边双连通分量)
...
- POJ3352 Road Construction (双连通分量)
Road Construction Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- [POJ3352]Road Construction(缩点,割边,桥,环)
题目链接:http://poj.org/problem?id=3352 给一个图,问加多少条边可以干掉所有的桥. 先找环,然后缩点.标记对应环的度,接着找桥.写几个例子就能知道要添加的边数是桥的个数/ ...
- POJ3352 Road Construction 双连通分量+缩点
Road Construction Description It's almost summer time, and that means that it's almost summer constr ...
- poj3352添加多少条边可成为双向连通图
Road Construction Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13311 Accepted: 671 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- 边双联通问题求解(构造边双连通图)POJ3352(Road Construction)
题目链接:传送门 题目大意:给你一副无向图,问至少加多少条边使图成为边双联通图 题目思路:tarjan算法加缩点,缩点后求出度数为1的叶子节点个数,需要加边数为(leaf+1)/2 #include ...
随机推荐
- sql server使用维护计划定时备份完整数据库、差异数据库
我配置的是: 一个月执行一次完整备份数据库,删除三个月前备份文件.每天执行一次差异备份,删除一个月钱备份文件. 1.管理-维护计划 右键-新建维护计划 2.创建子计划 3.分别配置作业计划属性(执 ...
- Unity使用外部版本控制
Using External Version Control Systems with Unity Unity offers an Asset Server add-on product for ea ...
- [Swift通天遁地]一、超级工具-(7)创建一个图文并茂的笔记本程序
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- 乐搏讲自动化测试- Python环境搭建(7)
Python的下载和安装 Python可应用于多平台包括 Linux 和 Mac OS X.你可以通过终端窗口输入 "python" 命令来查看本地是否已经安装Python以及Py ...
- [BZOJ3224/Tyvj1728]普通平衡树
本篇博客有详细题解,浅谈算法--splay
- Spring抽象JDBC,使用JdbcTemplate
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- dos 下小tip
tip 1:日期的格式化 方法如下: Echo %Date:~0,4%%Date:~5,2%%Date:~8,2%或者Set dt=%Date:~0,4%%Date:~5,2%%Date:~8,2%E ...
- 01-Entity FrameWork如何控制数据的变化
在Entity Framework所有操作数据就是更新EF容器中的实体状态 public enum EntityState { Added = , Deleted = , Detached = , M ...
- P1823 音乐会的等待
题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见的. ...
- 盒子模型,top和margin-top
1. 标准盒子模型: width只是内容的宽度. 元素的总宽度=width + padding*2 +border*2 +margin*2. IE盒子模型: width=内容的宽度 + padding ...