汉诺塔II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6189    Accepted Submission(s): 3021

Problem Description
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。 
  Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
 
Input
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
 
Output
对于每组数据,输出一个数,到达目标需要的最少的移动数。
 
Sample Input
1
3
12
 
Sample Output
1
5
81
 

参考:http://www.cnblogs.com/jackge/p/3218066.html

变体汉诺塔
    问题描述:在经典汉诺塔的基础上加一个条件,即,如果再加一根柱子(即现在有四根柱子a,b,c,d),计算将n个盘从第一根柱子(a)全部移到最后一根柱子(d)上所需的最少步数,当然,也不能够出现大的盘子放在小的盘子上面。注:1<=n<=64;
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)
     些时移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1(证明见再议汉诺塔一);
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
第(3)步结束后任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,并用一个标记变量min记录x的各个取值中F[n]的最小值。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
#define N 99999999
long long f[70];
int main()
{
int n;
f[1]=1;
f[2]=3;
long long minx;
for(int i=3; i<=64; i++)
{
minx=N;
for(int j=1; j<i; j++)
{
/*long long tmp=pow(2.0,i-j)-1;
tmp+=2*f[j];*/ //long long 只能表示-2^63——2^63-1 在2^63时溢出
if(pow(2.0,i-j)-1+2*f[j]<minx)
minx=pow(2.0,i-j)-1+2*f[j];
}
f[i]=minx;
} while(scanf("%d",&n)!=EOF)
{
cout<<f[n]<<endl;
}
return 0;
}

  

HDU_1207_汉诺塔2的更多相关文章

  1. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  2. C#递归解决汉诺塔问题(Hanoi)

    using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExamp ...

  3. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  4. Conquer and Divide经典例子之汉诺塔问题

    递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...

  5. 几年前做家教写的C教程(之四专讲了指针与汉诺塔问题)

    C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内 ...

  6. python实现汉诺塔

    经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --&g ...

  7. fzu1036四塔问题(汉诺塔问题拓展)

    #include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int ru ...

  8. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  9. 编程:递归编程解决汉诺塔问题(用java实现)

    Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; publ ...

随机推荐

  1. jq 常用手册

    1.替换标签 $("img[src='/_layouts/images/lstbulet.gif']").attr("src", "/huadong/ ...

  2. 用R进行微博分析的初步尝试

    新浪微博如火如荼,基于微博的各种应用也层出不穷. 有一种共识似乎是:微博数据蕴含着丰富的信息,加以适当的挖掘.可以实现众多商业应用.恰好社会网络分析也是我之前有所了解并持续学习的一个领域,因此我做了微 ...

  3. 在 Web 开发中,img 标签用来呈现图片,而且一般来说,浏览器是会对这些图片进行缓存的。

    在 Web 开发中,img 标签用来呈现图片,而且一般来说,浏览器是会对这些图片进行缓存的. 比如访问百度,我们可以发现,图片.脚本这种都是从缓存(内存缓存/磁盘缓存)中加载的,而不是再去访问一次百度 ...

  4. linux switch_root

    1 命令格式 switch_root newroot init 跳转到另外一个文件系统,并且把newroot作为新的mount tree,并且执行init程序. 2 特殊要求 newroot必须是一个 ...

  5. Vijos 1144 小胖守皇宫 【树形DP】

    小胖守皇宫 描述 huyichen世子事件后,xuzhenyi成了皇上特聘的御前一品侍卫. 皇宫以午门为起点,直到后宫嫔妃们的寝宫,呈一棵树的形状:某些宫殿间可以互相望见.大内保卫森严,三步一岗,五步 ...

  6. Codeforces Round #363 (Div. 2)E. LRU

    E. LRU time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  7. Android实战技巧之八:Ubuntu下切换JDK版本【转】

    本文转载自:http://blog.csdn.net/lincyang/article/details/42024565 Android L之后推荐使用JDK7编译程序,这是自然发展规律,就像是4年前 ...

  8. npm安装以及命令行

    安装visual studio的时候,安装Node.js会同时安装npm 查看版本 PS C:\Users\clu\Desktop> npm --version5.6.0 PS C:\Users ...

  9. 【Silverlight】Bing Maps学习系列(六):使用扩展模式(Extended Modes)(转)

    [Silverlight]Bing Maps学习系列(六):使用扩展模式(Extended Modes) 微软Bing Maps推出有有段时间了,通过不断的改进和新的地图更新,现在已经基本上形成了一套 ...

  10. 蓝书4.1-4.4 树状数组、RMQ问题、线段树、倍增求LCA

    这章的数据结构题很真实 T1 排队 bzoj 1699 题目大意: 求静态一些区间的最大值-最小值 思路: ST表裸题 #include<iostream> #include<cst ...