BZOJ3156 防御准备 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8688187.html
题目传送门 - BZOJ3156
题意
长为$n$的序列$A$划分,设某一段为$[i,j]$,则其花费为$A_j+\sum_{k=i}^{j}(j-k)$。
一种划分方式的花费就是他每一段的花费和。
最小化花费。
$n\leq 10^6$
题解
斜率优化裸题。
设$dp_i$表示序列前$i$项通过划分可以到的最小花费。
则
$$dp_i=min\{dp_j+a_i+\frac{(i-j)(i-j-1)}{2}\}(0\leq j<i)$$
按照套路化简。
得:
$$dp_j+a_i+\frac{(i-j)(i-j-1)}{2}\\=dp_j+a_i+\frac{j^2}2+\frac j2+\frac{i^2}2-\frac i2-ij$$
设$x_i=i,y_i=dp_i+\frac{i^2}2+\frac i2$,
则原式
$$=y_j-ix_j+\frac{i^2}2-\frac i2$$
假设$k<j$且从$k$转移比$j$劣,那么:
$$y_j-ix_j+\frac{i^2}2-\frac i2<y_k-ix_k+\frac{i^2}2-\frac i2$$
$$\Longrightarrow y_j-ix_j<y_k-ix_k$$
$$\Longrightarrow \frac{y_j-y_k}{x_j-x_k}<i$$
然后就是套路(其实前面也是套路……)
参见这里
但是这里为了避免精度问题,我们在计算$x$和$y$的时候都乘个$2$就可以了。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1000005;
int n,q[N],head=1,tail=0;
LL a[N],id[N],dp[N],x[N],y[N];
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]);
q[++tail]=0;
for (int i=1;i<=n;i++){
int j=q[head+1],k=q[head];
while (tail-head>0&&y[j]-y[k]<=(x[j]-x[k])*i)
head++,j=q[head+1],k=q[head];
j=k;
dp[i]=dp[j]+a[i]+1LL*(i-j-1)*(i-j)/2;
x[i]=i*2;
y[i]=dp[i]*2+i+1LL*i*i;
j=q[tail],k=q[tail-1];
while (tail-head>0&&(y[i]-y[j])*(x[j]-x[k])<=(y[j]-y[k])*(x[i]-x[j]))
tail--,j=q[tail],k=q[tail-1];
q[++tail]=i;
}
printf("%lld",dp[n]);
return 0;
}
BZOJ3156 防御准备 动态规划 斜率优化的更多相关文章
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- 2018.09.29 bzoj3156: 防御准备(斜率优化dp)
传送门 斜率dp经典题目. 然而算斜率的时候并没有注意到下标的平方会爆int于是咕咕*2. 这道题我用了两个数组来表示状态. f[i]f[i]f[i]表示最后i个位置倒数第i个放木偶的最优值. g[i ...
- BZOJ3156: 防御准备 【斜率优化dp】
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2207 Solved: 933 [Submit][Status][Discu ...
- bzoj3156 防御准备(斜率优化)
Time Limit: 10 Sec Memory Limit: 512 MB Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Out ...
- 【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...
- BZOJ3156 防御准备(动态规划+斜率优化)
设f[i]为在i放置守卫塔时1~i的最小花费.那么显然f[i]=min(f[j]+(i-j)*(i-j-1)/2)+a[i]. 显然这是个斜率优化入门题.将不与i.j同时相关的提出,得f[i]=min ...
- 【BZOJ-3156】防御准备 DP + 斜率优化
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 951 Solved: 446[Submit][Status][Discuss] ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
- [bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)
Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000, ...
随机推荐
- 【原创】运维基础之Ansible(2)离线安装
1 在一个能访问远程repo的服务器上执行,下载ansible及相关依赖的rpm包 # mkdir ansible# yum install --downloadonly --downloaddir= ...
- layui 常见的表单元素
第一步:引用文件 效果图(日期.文件上传在下面): <form class="layui-form" action=""> <div clas ...
- Go语言从入门到放弃(二) 优势/关键字
本来这里是写数据类型的,但是规划了一下还是要一步步来,那么本篇就先介绍一下Go语言的 优势/关键字 吧 本章转载 <The Way to Go>一书 Go语言起源和发展 Go 语 言 起 ...
- vue -webpack.dev.config.js模拟后台数据接口
在const portfinder = require('portfinder')后面添加 const express = require('express') const app = express ...
- mybatis 按in 函数参数顺序排序
使用 FIELD()函数 SELECT * FROM user WHERE id IN (72, 80, 69) ORDER BY FIELD(id, 72, 80, 69)
- swift 学习- 18 -- 自动引用计数
// Swift 使用 自动引用计数 (ARC) 机制来跟踪和管理你的应用程序的内存, 通常情况下, Swift 内存管理机制会一直起作用, 你无须自己来考虑内存的管理, ARC 会在类的实例不再被使 ...
- Confluence 6 配置避免管理员联系表单垃圾
你可以配置 Confluence 使用验证码(Captcha)来避免垃圾内容发送给 Confluence 管理员.有关管理员联系表单验证码的内容在全站验证码设置中进行配置,相关的文档请参考 Confi ...
- SpringBoot多环境区分
1.修改application.yml配置文件 spring: profiles: active: cppdy datasource: driver-class-name: com.mysql.jdb ...
- Django Rest Framework(2)
目录 一.认证 二.权限 三.限制访问频率 四.总结 一.认证(补充的一个点) 认证请求头 #!/usr/bin/env python # -*- coding:utf-8 -*- from rest ...
- WEB漏洞 XSS(一)
1.xss的形成原理 xss 中文名是“跨站脚本攻击”,英文名“Cross Site Scripting”.xss也是一种注入攻击,当web应用对用户输入过滤不严格,攻击者写入恶意的脚本代码(HTML ...