Sudoku
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 25356   Accepted: 11849   Special Judge

Description

Sudoku is a very simple task. A square table with 9 rows and 9 columns is divided to 9 smaller squares 3x3 as shown on the Figure. In some of the cells are written decimal digits from 1 to 9. The other cells are empty. The goal is to fill the empty cells with decimal digits from 1 to 9, one digit per cell, in such way that in each row, in each column and in each marked 3x3 subsquare, all the digits from 1 to 9 to appear. Write a program to solve a given Sudoku-task. 

Input

The input data will start with the number of the test cases. For each test case, 9 lines follow, corresponding to the rows of the table. On each line a string of exactly 9 decimal digits is given, corresponding to the cells in this line. If a cell is empty it is represented by 0.

Output

For each test case your program should print the solution in the same format as the input data. The empty cells have to be filled according to the rules. If solutions is not unique, then the program may print any one of them.

Sample Input

1
103000509
002109400
000704000
300502006
060000050
700803004
000401000
009205800
804000107

Sample Output

143628579
572139468
986754231
391542786
468917352
725863914
237481695
619275843
854396127

Source

 
 
数独转化为精确覆盖问题
https://www.cnblogs.com/grenet/p/3163550.html
这个讲的很详细
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int S[maxn], head[maxn], vis[maxn];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret, ans1; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
sort(vis, vis + );
int cnt = ;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
int num = vis[cnt++]; num=num - (i * + j) * ;
printf("%d", num);
// cout << 111 << endl; }
printf("\n");
} return true;
}
int c = R[];
for(int i = R[]; i; i = R[i]) if(S[c] > S[i]) c = i;
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = X[i];
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} char str[][]; void build(int x, int y, int k)
{
ans1 = (x * + y - ) * + k;
add(ans1, x * + k);
add(ans1, + (y - ) * + k);
add(ans1, + x * + y);
int block = (y - ) / * + x / ;
add(ans1, + block * + k); } int main()
{ int T;
rd(T);
while(T--)
{
//ans1 = 0;
m = * * ;
init(); for(int i = ; i < ; i++)
{
rs(str[i]);
for(int j = ; j <= ; j++)
{
if(str[i][j - ] == '')
for(int k = ; k <= ; k++) build(i, j, k);
else
build(i, j, str[i][j - ] - '');
}
}
dfs(); } return ;
}
 

Sudoku POJ - 2676(DLX)的更多相关文章

  1. Easy Finding POJ - 3740 (DLX)

    显然这是一道dfs简单题 或许匹配也能做 然而用了dancing links 显然这也是一道模板题 好的吧 调了一上午 终于弄好了模板 Easy Finding Time Limit: 1000MS ...

  2. 舞蹈链(DLX)

    舞蹈链(DLX) Tags:搜索 作业部落 评论地址 一.概述 特别特别感谢这位童鞋His blog 舞蹈链是一种优美的搜索,就像下面这样跳舞- 舞蹈链用于解决精确覆盖或者重复覆盖的问题 你可以想象成 ...

  3. 【LeetCode】36. Valid Sudoku 解题报告(Python)

    [LeetCode]36. Valid Sudoku 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址 ...

  4. POJ 3076 / ZOJ 3122 Sudoku(DLX)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  5. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  6. Sudoku POJ - 3076 (dfs+剪枝)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  7. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  8. NOIP 2009 靶形数独(DLX)

    小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作 ...

  9. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

随机推荐

  1. vue项目打包问题

    使用vue-cli脚手架构建vue项目 vue init webpack project npm run build 打包时出现 Tip: built files are meant to be se ...

  2. UVA-10375 唯一分解定理

    #include<iostream> #include<string.h> #include<algorithm> #include<math.h> # ...

  3. MySQL添加用户错误:ERROR 1364 (HY000): Field 'ssl_cipher' doesn't have a default value解决方法

    MySQL添加新用户时出现如下报错,如下图: 经过查资料了解到: mysql用户表的中某些字段不能为空,没有默认值,其实是操作错误,mysql添加用户是不能这样直接insert user表的. 改为以 ...

  4. PS调出冷绿色电影画面风格

    原图 一.按照惯例先磨皮,我修照片的习惯是,先拉一层色阶,使直方图平均分配,画面会显得没那么灰,当然,这只是个人喜好,先加后加都没所谓. 二.由于脸部的亮度不够,显得有点脏.所以这一步主要是通过拉曲线 ...

  5. Podfile文件用法详解

    https://www.jianshu.com/p/b8b889610b7e 2018.01.09 15:51* 字数 2343 阅读 6263评论 3喜欢 34 前言 iOS开发会经常用到cocoa ...

  6. Elasticsearch IK+pinyin

    如何在Elasticsearch中安装中文分词器(IK+pinyin)   如果直接使用Elasticsearch的朋友在处理中文内容的搜索时,肯定会遇到很尴尬的问题——中文词语被分成了一个一个的汉字 ...

  7. CentOS 6.5 手动rpm包安装gcc、g++

    摘自:https://blog.csdn.net/lichen_net/article/details/70211204 mount CentOS的安装光盘,然后先后安装 rpm -ivh ppl-0 ...

  8. scoketio

    服务器代码let net = require('net'); // 创建服务器 let server = net.createServer(); // 定义一个数组 ,存放每一个连接服务器的客户端用户 ...

  9. C#复习笔记(4)--C#3:革新写代码的方式(Lambda表达式和表达式树)

    Lambda表达式和表达式树 先放一张委托转换的进化图 看一看到lambda简化了委托的使用. lambda可以隐式的转换成委托或者表达式树.转换成委托的话如下面的代码: Func<string ...

  10. Oracle 同义词(Synonym)

    同义词(Synonym)是表.索引.视图等模式对象的一个别名.通过模式对象创建同义词,可以隐藏对象的实际名称和所有者信息,隐藏分布式数据库中远程对象的设置信息,由此为对象提提供一定的安全性保证.同义词 ...